【题目】某中学准各去湿地公园开展社会实践活动,学校给出A:十八弯,B:长广溪,C:九里河,D:贡湖湾,共四个目的地.为了解学生最喜欢哪一个目的地,随机抽取了部分学生进行调査,并将调査结果绘制了如下两幅不完整的统计图.请回答下列问题:
(1)这次被调査的学生共有 人.
(2)请你将条形统计图补充完整.
(3)扇形统计图中D项目对立的扇形的圆心角度数是 °.
(4)已知该校学生2400人,请根据调査结果估计该校最喜欢去长广溪湿地公园的学生人数.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=8,∠CBD=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为,另两边的长b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x<3时,y1<y2;④当y1>0且y2>0时,﹣a<x<4.其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,先将抛物线y=2x2﹣4x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为( )
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=﹣x+与x轴交于点A,与y轴交于点B;抛物线y=ax2+bx+(a≠0)过A,B两点,与x轴交于另一点C(﹣1,0),抛物线的顶点为D.
(1)求出A,B两点的坐标;
(2)求抛物线的解析式及顶点D的坐标;
(3)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;
(4)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线BD,DF的距离相等,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O在矩形ABCD内,且与AB、BC边都相切,E是BC上一点,将△DCE沿DE对折,点C的对称点F恰好落在⊙O上,已知AB=20,BC=25,CE=10,则⊙O的半径为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣1和抛物线L:y=ax2+bx+c(a≠0),抛物线L的顶点为原点,且经过点A(2,),直线y=kx+1与y轴交于点F,与抛物线L交于点B(x1,y1),C(x2,y2),且x1<x2.
(1)求抛物线L的解析式;
(2)点P是抛物线L上一动点.
①以点P为圆心,PF为半径作⊙P,试判断⊙P与直线l的位置关系,并说明理由;
②若点Q(2,3),当|PQ﹣PF|的值最小时,求点P的坐标;
(3)求证:无论k为何值,直线l总是与以BC为直径的圆相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com