精英家教网 > 初中数学 > 题目详情

【题目】将一副扑克牌中点数为“2”“3”“4”“6”的四张牌背面朝上洗匀,先从中抽出1张牌,记录下牌面点数为x,再从余下的3张牌中抽出1张牌,记录下牌面点数为y.设点P的坐标为(xy).

1)请用表格或树状图列出点P所有可能的坐标.

2)求点P在抛物线yx2+x上的概率.

【答案】112种,见解析;(2

【解析】

1)利用画树状图展示所有12种等可能的结果数即可;

2)先找出点P在抛物线yx2+x上的情况数,再根据概率公式求解即可.

解:(1)画树状图为:

共有12种等可能的结果数;

2)只有(23)在抛物线yx2+x上,

∴点P在抛物线yx2+x上的上的结果数为1

所以点P在抛物线yx2+x上的概率是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD,AB=6,BC=8,EBC边上的一个动点(不与点B.C重合),连结AE,并作EFAE,交CD边于点F,连结AF.BE=xCF=y.

1)求证:△ABE∽△ECF

2)当x为何值时,y的值为2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超市销售某种儿童玩具,该玩具的进价为100/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。设上涨后的销售单价为x元,每天售出y.

1)请写出yx之间的函数表达式并写出x的取值范围;

2)设超市每天销售这种玩具可获利w元,当x为多少元时w最大,最大为名少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1S是矩形ABCDAD边上一点,点E以每秒kcm的速度沿折线BSSDDC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点EF同时停止运动.设点EF出发t秒时,△EBF的面积为.已知yt的函数图像如图2所示.其中曲线OMNP为两段抛物线,MN为线段.则下列说法:

①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;

②矩形ABCD的两邻边长为BC6cmCD4cm

sinABS

④点E的运动速度为每秒2cm.其中正确的是(  )

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题发现)如图1,半圆O的直径AB10,点P是半圆O上的一个动点,则△PAB的面积最大值是

(问题探究)如图2所示,ABAC是某新区的三条规划路,其中AB6kmAC3km,∠BAC60°所对的圆心角为60°.新区管委会想在路边建物资总站点P,在ABAC路边分别建物资分站点EF,即分别在、线段ABAC上选取点PEF.由于总站工作人员每天要将物资在各物资站点间按PEFP的路径进行运输,因此,要在各物资站点之间规划道路PEEFFP.显然,为了快捷环保和节约成本,就要使线段PEEFFP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km

(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB90°OA12米,在围墙OAOB上分别有两个入口CD,且AC4米,DOB的中点,出口E上.现准备沿CEDE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.

①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)

②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.

请问:在上是否存在点E,使铺设小路CEDE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的不动点.如图,在平面直角坐标系xOy中,已知抛物线yx22x,其顶点为A

1)试求抛物线yx22x不动点的坐标;

2)平移抛物线yx22x,使所得新抛物线的顶点B是该抛物线的不动点,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.

1)用x的代数式表示该厂购进化工原料  吨;

2)当x50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;

3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过DDEAC,垂足为E

1)证明:DE为⊙O的切线;

2)连接OE,若BC=4,求OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____

查看答案和解析>>

同步练习册答案