【题目】已知:如图,△ABC是边长为3cm等边三角形,动点P、Q分别同时从A、B两点出发,分别沿AB、BC方向匀速移动,点P速度为1cm/s,点Q的速度为2cm/s,当点Q到达点C时,P、Q两点停止运动,设点P的运动时间为t(s),
⑴当t为何值时,△PBQ是直角三角形?
⑵△PBQ能否成为等边三角形?若能,请求出t值;若不存在,请说明理由.
【答案】(1)t=0.6或1.5时,△PBQ是直角三角形;(2)当t=1时,△BPQ是等边三角形,理由见解析.
【解析】
(1)根据等边三角形的性质可得∠B=60°,分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据30°所对的直角边是斜边的一半建立方程求解;
(2)根据等边三角形的性质可得方程3-t=2t,解方程求解即可.
(1)根据题意得AP=tcm,BQ=2tcm,
∵在△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3t)cm,
在△PBQ中,BP=3t,BQ=2t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=BP,
即2t= (3t),t=0.6,
当∠BPQ=90°时,BP=BQ,
3t=×2t,t=1.5
当t=0.6或1.5时,△PBQ是直角三角形.
(2)当△BPQ为等边三角形时,
BP=PQ=BQ,
即3t=2t,
解得t=1.
故当t=1时,△BPQ是等边三角形.
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.
(1)求∠EBC的度数;
(2)求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.
(1)如图1,如果AC=BD,求弦AC的长;
(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;
(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点是轴上一点,点、在轴上,且、满足等式.
(1)求、的值;
(2)若点坐标为,动点从点出发沿射线运动,连接,设点的纵坐标为,的面积为,求与的关系式,并直接写出的取值范围;
(3)当点在线段上,点是线段的延长线上一点,连接、,,若与的周长差为 2,点是轴上一点,若是以为顶角的等腰三角形,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com