精英家教网 > 初中数学 > 题目详情

【题目】[数学实验探索活动]

实验材料现有若干块如图①所示的正方形和长方形硬纸片.

实验目的:

用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.

例如,选取正方形、长方形硬纸片共 6 块,拼出一个如图②的长方形,计算它的面积, 写出相应的等式有 a2+3ab+2b2=(a+2b)(a+b) (a+2b)(a+b) =a2+3ab+2b2

问题探索:

(1) 小明想用拼图的方法解释多项式乘法(2a+b)(a+b) =2a2+3ab+b2 ,那么需要两种正方形纸片 张,长方形纸片 张;

(2)选取正方形、长方形硬纸片共 8 块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;

(3)试借助拼图的方法,把二次三项式 2a2+5ab+2b2 分解因式,并把所拼的图形画在虚线方框内.

【答案】13,3;(2a2+4ab+3b2=a+3b)(a+b);(32b2+5ab+2a2=2b+a)(b+2a).画图见解析.

【解析】

1)根据多项式(2a+b)(a+b) =2a2+3ab+b2可发现矩形有两个小正方形,一个大正方形和三个小长方形.

2)正方形、长方形硬纸片一共八块,面积等于长为a+3b,宽为a+b的矩形面积.所以a2+4ab+3b2=a+3b)(a+b

3)正方形、长方形硬纸片共9块,画出图形,面积等于长为a+2b,宽为2a+b的矩形面积,则2a2+5ab+2b2=2a+b)(a+2b

1)∵(2a+b)(a+b) =2a2+3ab+b2

∴拼图需要两个小正方形,一个大正方形和三个小长方形

∴需要3个正方形纸片,3个长方形纸片.

2)∵大长方形长为a+3b,宽为a+b

∴面积S=a+3b)(a+b

又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成

∴面积S= a2+4ab+3b2

a2+4ab+3b2=a+3b)(a+b)

3)∵由2b2+5ab+2a2可知

大长方形由两个小正方形和两个大正方形以及五个长方形组成,如图

2b2+5ab+2a2=2b+a)(b+2a).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:如果一个数的平方等于 ,记为 ,这个数 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为 为实数), 叫这个复数的实部, 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:
(1)填空: = =
(2)填空:① ; ②
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知, ,( 为实数),求 的值.
(4)试一试:请利用以前学习的有关知识将 化简成 的形式.
(5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简

(1)|1|+(2)3+(7π)0

(2)3a32a63a12÷a3

(3)(x+y)2+(xy)(x+2y)

(4)(3a+b2)(3ab+2)

(5)(3a+2)2(3a2)2

(6)7862786×172+862

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化归与转化的思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决。

(1)我们知道可以得到。如果,求的值.

(2)已知 试问多项式a2+b2+c2abacbc的值是否与变量的取值有关?若有关请说明理由;若无关请求出多项式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】节能灯在城市已基本普及,今年某省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:

(1)求甲、乙两种节能灯各进多少只?

(2)全部售完120只节能灯后,该商场获利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,要使四边形ABCD是正方形,则需要添加一个条件是 . (填一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD于点F,求证:四边形EBFD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.
①当矩形PQNM的周长最大时,求△ACM的面积;
②在①的条件下,当矩形PMNQ的周长最大时,过直线AC上一点G作y轴的平行线交抛物线一点F,是否存在点F,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.

例如,由图1,可得等式:

⑴根据如图1,写出一个等式:

⑵如图2,若长方形的长AB10AD宽为6,分别求ab的值;

⑶如图3,将两个边长分别为ab的正方形拼在一起,BCG三点在同一直线上,连接BDBF.若这两个正方形的边长满足a+b6ab10,请求出阴影部分的面积.

查看答案和解析>>

同步练习册答案