精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AC与BD互相平分.

【答案】见解析

【解析】分析:(1)用ASA判定两三角形全等即可证明.
(2)只要证明四边形ABCD是平行四边形即可解决问题.

详解:

(1)∵BF=DE,

∴BF-EF=DE-EF,

即BE=DF,

∵AE⊥BD,CF⊥BD,

∴∠AEB=∠CFD=90°,

∵AB=CD,

∴Rt△ABE≌Rt△CDF(HL);

(2)连接AC,如图:

∵△ABE≌△CDF,

∴∠ABE=∠CDF,

∴AB∥CD,

∵AB=CD,

∴四边形ABCD是平行四边形,

∴AC与BD互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知∠AOB110°,∠COD40°OE平分∠AOCOF平分∠BOD

1)如图,求∠EOF的度数.

2)如图,当OBOC重合时,求∠AOE﹣∠BOF的值;

3)当∠COD从图的位置绕点O以每秒的速度顺时针旋转t秒(0t10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DBC的中点,DEBCAC于点E,已知AD=AB,连接BEAD于点F,下列结论:①BE=CE②∠CAD=ABESABF=3SDEF④△DEF∽△DAE,其中正确的有(   )

A. 1 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形ABCD,AB=4cm,BC=8cm,AC的垂直平分线EF分别交ADBC于点E. F,垂足为O.

(1)如图1,连接AFCE.求证:四边形AFCE为菱形.

(2)如图1,求AF的长.

(3)如图2,动点PQ分别从A. C两点同时出发,沿△AFB和△CDE各边匀速运动一周。即点PAFBA停止,点QCDEC停止。在运动过程中,点P的速度为每秒1cm,设运动时间为t.

①问在运动的过程中,以A. PC. Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.

②若点Q的速度为每秒0.8cm,当A. PC. Q四点为顶点的四边形是平行四边形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.

(1)2014年这种礼盒的进价是多少元/盒?

(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是抛物线型拱桥,P处有一照明灯,水面OA4m,从OA两处观测P处,仰角分别为αβtanαtanβ,以O为原点,OA所在直线为x轴建立直角坐标系.

(1)求点P的坐标;

(2)水面上升1m,水面宽多少(1.41,结果精确到0.1m)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=120°OC是∠AOB内部任意一条射线,ODOE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是(

A. AOD+BOE=60°B. AOD=EOC

C. BOE=2CODD. DOE的度数不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)计算:|6|7+(﹣3

2)计算:﹣32÷3×(﹣23

3)化简:22x2y+x)﹣3x2y2x

4)解方程:52x3x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

2)连接ADCD,求⊙D的半径及扇形DAC的圆心角度数;

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

同步练习册答案