【题目】如图,⊙O的直径PD=8,点E是⊙O上一点,点A是的中点,连接PA,过点A作直线l⊥PE,垂足为点B,PB=6,直径PD的延长线交直线l于点F.
(1)求证:直线l是⊙O的切线;
(2)求线段PA的长;
(3)求阴影部分的面积.
【答案】(1)见解析;(2)AP=;(3)
【解析】
(1)连接OA,由等弧对等角可得∠APD=∠APE,再由等边对等角得∠APD=∠OAP,然后推出OA∥BP进而得出OA⊥BF,即可得证;
(2)连接AD,由圆周角定理可得∠DAP=90°,然后易证△DAP∽△APB,由比例关系求出AP;
(3)利用勾股定理求出AD,可知△OAD为等边三角形,然后根据即可得出答案.
解:(1)证明:如图,连接OA.
,
∴∠APD=∠APE,
∵OA=OP,
∴∠APD=∠OAP,
∴∠OAP=∠APE,
∴OA∥BP,
∵PB⊥FB,
∴OA⊥BF,
∴直线l是⊙O的切线.
(2)如图,连接AD,
∵AD是⊙O的直径
∴∠DAP=∠ABP=90°
又∵∠APD=∠APE,
∴△DAP∽△APB,
∴AP2=PB·PD,
∴AP=.
(3)∵AD=
∴AD=OD=OA
∴△OAD是等边三角形,
∴∠AOD=60°
∴
∴.
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点p在BD上移动,当PB= ______ 时,△APB和△CPD相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=cx2+2cx-3c(c≠0),则下列说法不正确的是( )
A.对称轴为直线x=-1
B.与x轴有两个不同的交点
C.可能过原点
D.若(-4,y1)、(4,y2)是抛物线的两点,则y1y2>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且。连接AE、AF,M是AF的中点,作射线DM交AE于点N.
(1)如图1,若点E,F分别在BC,CD边上。
求证:①;
②;
(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年7月20日猪肉价格比今年年初上涨了60%,某市民今年7月20日在某超市购买1千克猪肉花了80元钱.
(1)问:今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克65元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣bx+c的y与x的部分对立值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列结论①抛物线的开口向下:②其图象的对称轴为x=1:③当x<1时.函数值y随x的增大而增大,④方程ax2+bx+c=0有一个根大于4.其中正确的结论有_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com