【题目】如图,已知矩形ABCD中,AB=6,AD=8将矩形ABCD沿直线MN翻折后,点B恰好落在边AD上的点E处,如果AE=2AM,那么CN的长为______.
【答案】
【解析】
如图,过N作NF⊥AD于F,可得NF=AB,根据矩形的性质和折叠的性质可得∠MEN=∠B=90°,EN=BN,根据直角三角形两锐角互余的性质及平角的定义可得∠AME=∠NEF,进而可证明△AEM∽△FNE,根据AE=2AM可求出EF的长,在Rt△FNE中,利用勾股定理可求出EN的长,进而可求出CN的长.
如图,过N作NF⊥AD于F,
∵四边形ABCD是矩形,AB=6,
∴NF=AB=6,
∵矩形ABCD沿直线MN翻折后,点B恰好落在边AD上的点E处,
∴EN=BN,∠MEN=∠B=90°,
∴∠AEM+∠NEF=90°,
∵∠AEM+∠AME=90°,
∴∠AME=∠NEF,
又∵∠A=∠EFN=90°,
∴△AEM∽△FNE,
∴,
∵AE=2AM,NF=6,
∴EF=3,
∴BN=EN===,
∵BC=8,
∴CN=BC-BN=8-,
故答案为:8-
科目:初中数学 来源: 题型:
【题目】如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围.
(2)当x为何值时,S有最大值?并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,G为△ABC纸片的重心,DG∥AC交BC于点D,连结BG,剪去△BGD纸片,剩余部分纸片如图2所示,若原△ABC纸片面积为5,则图2纸片的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,,,(如图),点,分别为射线上的动点(点C、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.
(1)如图1,当时,求AF的长.
(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.
(3)连接交于点,若是等腰三角形,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,2,3,4,小明先从布袋中随机摸出一个乒乓球,不放回去,再从剩下的3个球中随机摸出第二个乒乓球.
(1)求小明第一次摸出的乒乓球所标数字是偶数的概率;
(2)请用树状图或列表的方法求两次摸出的乒乓球球面上数字的积为偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
对称轴为______,顶点坐标为______;
在坐标系中利用五点法画出此抛物线.
x | ______ | ______ | ______ | ______ | ______ | ||
y | ______ | ______ | ______ | ______ | ______ |
若抛物线与x轴交点为A、B,点在抛物线上,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com