【题目】在某次防灾抗灾过程中,为了保障某市的抗灾物资供应,现有一批救灾物资由,两种型号的货车运输至该市.已知辆型货车和辆型货车共可满载救灾物资吨,辆型货车和辆型货车共可满载救灾物资吨.
(1)求辆型货车和辆型货车分别能满载多少吨;
(2)已知这批救灾物资共吨,计划同时调用,两种型号的货车共辆,并要求一次性将全部物资运送到该市,试求调用,两种型号的货车的方案.
科目:初中数学 来源: 题型:
【题目】某水果商将一种高档水果放在商场销售,该种水果成本价为10元,售价为40元,每天可销售20.调查发现,销售单价每下降1元,每天的销售量将增加5.
(1)直接写出每天的销售量ykg与降价(元)之间的函数关系式;
(2)降价多少元时,每天的销售额元最大,最大是多少元?(销售额=售价×数量)
(3)每销售1水果,需向商场缴纳柜台费元(),水果商计划租赁柜台20天,为了促销,决定开展“每天降价1元”活动,即从第1天开始,每天的销售单价比前一天下降1元(第1天的销售单价为39元),经测算发现,销售的前11天,每天的利润元随销售天数(为正整数)的增大而增大,试确定的取值范围.(利润=销售额-成本-柜台费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数将此函数的图象记为.
(1)当时,
直接写出此函数的函数表达式.
点在图象上,求点的坐标.
点在图象上,求的值.
(2)设图象最低点的纵坐标为.当时,直接写出的值.
(3)矩形的顶点坐标分别为若函数在范围内的图象与矩形的边有且只有一个公共点,直接写出此时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).
(1)求这个二次函数的表达式;
(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC面积最大时,求点P的坐标和△APC的面积最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴于点,,交轴于点,且抛物线的对称轴经过点,过点的直线交抛物线于另一点,点是该抛物线上一点,连接,,,.
(1)求直线及抛物线的函数表达式;
(2)试问:轴上是否存在某一点,使得以点,,为顶点的与相似?若相似,请求出此时点的坐标;若不存在,请说明理由;
(3)若点是直线上方的抛物线上一动点(不与点,重合),过作交直线于点,以为直径作,则在直线上所截得的线段长度的最大值等于_______.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
(1)方法体验:
如图1,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H,容易证明四边形PEDH和四边形PFBG是面积相等的矩形,分别连结EG,FH.
①根据矩形PEDH和矩形PFBG面积相等的关系,那么PE·PH= .
②求证:EG∥FH.
(2)方法迁移:
如图2,已知直线 分别与x轴,y轴交于D,C两点,与双曲线 交于A,B两点. 求证:AC=BD.
(3)知识应用:
如图3,反比例函数 (x>0)的图象与矩形ABCO的边BC交于点D,与边AB交于点E, 直线DE与x轴,y轴分别交于点F,G .若矩形ABCO的面积为10,△ODG与△ODF的面积比为3:5,则k=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com