【题目】如图,等腰直角三角形中,,D是上一点,连接,过点作于交于在是上一点,过点作于,延长到连接,使,若,则线段的长度为_______.
【答案】
【解析】
作高线AM,根据等腰直角三角形和三线合一得:∠BAM=∠CAM=45°,设∠BAE=α,表示各角的度数,证明KG=KC,由HG:HK=2:3,设HG=2a,HK=3a计算KC、KG和CH的长,根据等角三角函数得tan∠EAM=,设FN=b,则AF=2b,由勾股定理列方程得:AD2=AF2+DF2,得102=(2a)2+(b)2,解出b的值可得结论.
解:过点A作AM⊥BC于点M,交CD于点N,
∴∠AMB=∠AMC=90°,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,AM=BM=CM,∠BAM=∠CAM=45°,
设∠BAE=α,则∠EAM=45°-α,∠AEC=∠B+∠BAE=45°+α,
∵AE⊥CD于点F,
∴∠AFD=∠AFC=∠EFC=90°,
∴∠ACF=90°-∠CAF=∠BAE=α,
∴∠ECF=∠ACB-∠ACF=45°-α=∠EAM,
∵GH⊥BC于H,
∴∠CHG=∠CHK=90°,
∴∠CGH=90°∠ECF=90°-(45°-α)=45°+α,∠K+∠KCH=90°,
∵∠K+2∠BAE=90°,
∴∠KCH=2∠BAE=2α,
∴∠KCG=∠KCH+∠ECF=2α+(45°-α)=45°+α,
∴∠CGH=∠KCG,
∴KG=KC,
∵HG:HK=2:3,设HG=2a,HK=3a,
∴KC=KG=5a,
∴Rt△CHK中,CH=,
∴Rt△CHG中,tan∠ECF=,
∴Rt△CMN中,tan∠ECF=,
∴MN=CM=AM=AN,
∵∠ECF=∠EAM=45°-α,
∴Rt△ANF中,tan∠EAM==,
设FN=b,则AF=2b,
∴MN=AN=,
∴AM=CM=2AN=,
∴Rt△CMN中,CN=,
∴CF=FN+CN=6b,
∴Rt△ACF中,tan∠ACF=,
∵∠ACF=∠DAF=α,
∴Rt△ADF中,tan∠DAF=,
∴DF=AF=b,
∵AD2=AF2+DF2,AD=10,
∴102=(2a)2+(b)2,
解得:b1=,b2=(舍去),
∴CF=6×=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】现今“微信运动”被越来越多的人关注和喜爱,某数学兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
请根据以上信息,解答下列问题:
(1)写出,,,的值并补全频数分布直方图;
(2)我市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?
(3)若在名被调查的教师中,选取日行走步数超过步(包含步)的两名教师与大家分享心得,用树形图或列表法求被选取的两名教师恰好都在步(包含步)以上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )
A.252元/间B.256元/间C.258元/间D.260元/间
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为,点是轴正半轴上的一个动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图像( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,过点的两条直线分别交轴于,两点,且、两点的纵坐标分别是一元二次方程的两个根.
(1)试问:直线与直线是否垂直?请说明理由.
(2)若点在直线上,且,求点的坐标.
(3)在(2)的条件下,在直线上寻找点,使以、、三点为顶点的三角形是等腰三角形,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,是坐标原点,抛物线交轴于两点(如图),顶点是,对称轴交轴于点
(1)如图(1)求抛物线的解析式;
(2)如图(2)是第三象限抛物线上一点,连接并延长交抛物线于点,连接求证:;
(3)如图(3)在(2)问条件下,分别是线段延长线上一点,连接,过点作于交于点,延长交于,若求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小时,则∠AMN+∠ANM的度数是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD是平行四边形,且以BC为直径的⊙O经过点A.
(1)如图①,若AD与⊙O相切,求∠ABC的度数;
(2)如图②,若AD与⊙O相交,交点E为AD的中点,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是线段上的两点,,,.以为圆心以为半径作圆弧,以为圆心以为半径作圆弧,两圆弧相交于点构成,设.
(1)求的取值范围;
(2)若为直角三角形,求的值;
(3)当是锐角时,求的最大面积?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com