9£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¨Èçͼ£©£¬Å×ÎïÏßy=ax2-4ÓëxÖáµÄ¸º°ëÖáÏཻÓÚµãA£¬ÓëyÖáÏཻÓÚµãB£¬AB=$2\sqrt{5}$£®µãPÔÚÅ×ÎïÏßÉÏ£¬Ïß¶ÎAPÓëyÖáµÄÕý°ëÖá½»ÓÚµãC£¬Ïß¶ÎBPÓëxÖáÏཻÓÚµãD£®ÉèµãPµÄºá×ø±êΪm£®
£¨1£©ÇóÕâÌõÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Óú¬mµÄ´úÊýʽ±íʾÏß¶ÎCOµÄ³¤£»
£¨3£©Èç¹û°ÑA¡¢BÖ®¼äµÄÅ×ÎïÏߣ¨°üº¬A¡¢BÁ½µã£©Í¼Ïó¼ÇΪG£¬Ö±Ïßl£ºy=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóbµÄÖµ£®

·ÖÎö £¨1£©Ïȸù¾ÝyÖáÉϵãµÄ×ø±êÌØÕ÷È·¶¨B£¨0£¬-4£©£¬ÔÙÀûÓù´¹É¶¨Àí¼ÆËã³öOA=2£¬ÔòAµã×ø±êΪ£¨-2£¬0£©£¬È»ºó°ÑAµã×ø±ê´úÈëy=ax2-4Çó³öaµÄÖµ¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©¸ù¾Ý¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬ÉèP£¨m£¬m2-4£©£¨m£¾2£©£¬Çó³öÖ±ÏßAPµÄ½âÎöʽ¼´¿É£®
£¨3£©ÌÖÂÛ£ºµ±Ö±Ïßy=-x+b¾­¹ýµãA£¨-2£¬0£©Ê±£¬y=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£¬µ±Ö±Ïßy=-x+b¾­¹ýµãB£¨0£¬-4£©Ê±£¬y=-x+bÓëͼÏóG£¬ÓÐ2¸ö¹«¹²µã£¬ÓÉ´Ë¿ÉÒԵóöbµÄȡֵ·¶Î§£»µ±Èôy=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÀûÓ÷½³Ì-x+b=x2-4Óеȸù£¬¡÷=0¼´¿É£®

½â´ð ½â£ºÈçͼ£¬
£¨1£©µ±x=0ʱ£¬y=ax2-4=-4£¬ÔòB£¨0£¬-4£©£¬ËùÒÔOB=4£¬
ÔÚRt¡÷OABÖУ¬OA=$\sqrt{A{B}^{2}-O{B}^{2}}$=$\sqrt{£¨2\sqrt{5}£©^{2}-{4}^{2}}$=2£¬
¡àAµã×ø±êΪ£¨-2£¬0£©£¬
°ÑA£¨-2£¬0£©´úÈëy=ax2-4µÃ4a-4=0£¬½âµÃa=1£¬
¡àÅ×ÎïÏß½âÎöʽΪy=x2-4£»
£¨2£©ÉèP£¨m£¬m2-4£©£¨m£¾2£©£¬
ÉèÖ±ÏßAPµÄ½âÎöʽΪy=kx+n£¬
°ÑA£¨-2£¬0£©£¬P£¨m£¬m2-4£©´úÈëµÃ$\left\{\begin{array}{l}{-2k+n=0}\\{mk+n={m}^{2}-4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=m-2}\\{n=2m-4}\end{array}\right.$£®
¹ÊÖ±ÏßAPµÄ½âÎöʽΪy=£¨m-2£©x+2m-4£¬
µ±x=0ʱ£¬y=£¨m-2£©x+2m-4=2m-4£¬
¡àC£¨0£¬2m-4£©£¬
¡àOC=2m-4£»
£¨3£©¢Ùµ±Ö±Ïßy=-x+b¾­¹ýµãA£¨-2£¬0£©Ê±Ö±ÏßÓëͼÏóGÖ»ÒªÒ»¸ö½»µã£¬2+b=0£¬½âµÃb=-2£¬µ±Ö±Ïßy=-x+b¾­¹ýµãB£¨0£¬-4£©Ê±Ö±ÏßÓëͼÏóGÓÐÁ½¸ö½»µã£¬b=-4£¬
ËùÒÔµ±-2¡Üb£¼-4ʱ£¬y=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£»
¢Úµ±·½³Ì×é$\left\{\begin{array}{l}{y={x}^{2}-4}\\{y=-x+b}\end{array}\right.$ÓÐÒ»×é½âʱ£¬y=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£¬Ôò·½³Ì-x+b=x2-4Óеȸù£¬
ËùÒÔ¡÷=1-4£¨-4-b£©=0£¬½âµÃb=-$\frac{17}{4}$£¬
×ÛÉÏËùÊö£ºµ±-2¡Üb£¼-4»òb=-$\frac{17}{4}$ʱ£¬y=-x+bÓëͼÏóGÖ»ÓÐÒ»¸ö¹«¹²µã£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏß½âÎöʽ¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬Àí½âÌâÒâÊǽâÌâµÄ¹Ø¼ü£¬µÚÈý¸öÎÊÌâÓеãÄѶȣ¬Í¨¹ýÌØÊâµã£¬×ª»¯µÄ˼Ïë½â¾ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èô¹ØÓÚxµÄº¯Êýy=£¨a+1£©x2-3ax-2+aÊǶþ´Îº¯Êý£¬Ôòa±ØÐëÂú×ãµÄÌõ¼þÊÇa¡Ù-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬AB=4£¬µãCÔÚ¡ÑOÉÏ£¬¡ÏCAB=30¡ã£¬DΪ$\widehat{BC}$µÄÖе㣬PÊÇÖ±¾¶ABÉÏÒ»¶¯µã£¬ÔòPC+PDµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®$\sqrt{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÊýÖáÉϾàÔ­µã3¸öµ¥Î»³¤¶ÈµÄµãÓÐ2¸ö£¬ËüÃÇ·Ö±ð±íʾÊý¡À3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ¡õ¡Á£¨-$\frac{1}{16}$£©¡Á£¨-4£©=-2ÖУ¬¡õµÄÊýΪ-8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÏÂÁÐͼÐÎÓÉ5¸ö´óСһÑùÕý·½Ìå×é³É£¬»­³ö¸ÃÁ¢ÌåͼÐεÄÈýÊÓͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÒÑÖªÊýÖáÉÏA¡¢BÁ½µãËù±íʾµÄÊý·Ö±ðΪ-2ºÍ8£®
£¨1£©Ïß¶ÎAB³¤ÊÇ10£»
£¨2£©ÈôPΪÏß¶ÎABÉϵÄÒ»µã£¨µãP²»ÓëA¡¢BÁ½µãÖØºÏ£©£¬MΪPAµÄÖе㣬NΪPBµÄÖе㣬ÇëÄã»­³öͼÐΣ¬ÇóMNµÄ³¤£»
£¨3£©ÈôPΪÊýÖáÉϵÄÒ»µã£¨µãP²»ÓëA¡¢BÁ½µãÖØºÏ£¬MΪPAµÄÖе㣬NΪPBµÄÖе㣬µ±µãPÔÚÊýÖáÉÏÔ˶¯Ê±£»MNµÄ³¤¶ÈÊÇ·ñ·¢Éú¸Ä±ä£¿ÇëÄã»­³öͼÐÎ˵Ã÷£¬Ö±½Óд³öÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô3x=4£¬3y=2£¬Ôò3x-y=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÒÑÖªËıßÐÎABCDÖÐE£¬F£¬G£¬H£¬N¡¢N£¬R¡¢S·Ö±ðÊÇËıßÐÎÈýµÈ·Öµã£¬ÇóÖ¤£ºSÒõÓ°=$\frac{1}{9}$SËıßÐÎABCD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸