精英家教网 > 初中数学 > 题目详情

【题目】计算:

1(-3ab)·(-2a)·(-a2b3)

2(25m2+15m3n-20m4)÷(-5m2)

【答案】1-6a4b4;2-5-3mn+4m2

【解析】

1)根据单项式乘以单项式法则即可解答;(2)根据多项式除以单项式法则即可解答.

解:(1(-3ab)·(-2a)·(-a2b3)=-6a4b4;

2(25m2+15m3n-20m4)÷(-5m2)

=25m2÷-5m2+15m3-5m2-20m4÷-5m2

=-5-3mn+4m2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,下列四组条件中,能判定ABCD是正方形的有(  )
①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,DE垂直平分ACDFBC , 当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雅安地震发生后,全国人民抗震救灾,众志成城,在地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600


(1)全部物资可用甲型车8辆,乙型车5辆,丙型车辆来运送.
(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(3)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.
(1)求证:AE=CG;
(2)试判断BE和DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表,则当y5时,x的取值范围是_____

x

1

0

1

2

3

y

10

5

2

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.

(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.

(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,对角线AC=16cm,BD=12cm,DH⊥BC于点H,交AC于点G.
(1)写出两个不全等且与△GHC相似的三角形,并任选其中的一个进行证明;
(2)求GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某日傍晚,黄山的气温由上午的零下2℃下降了7℃,这天傍晚黄山的气温是℃.

查看答案和解析>>

同步练习册答案