【题目】正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.
(1)当0°<α<45°时,设AM交BC于点F,
①如图1,若α=35°,则∠BCE= °;
②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;
(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.
【答案】(1)①35;②AE=CE+BE.证明见解析;(2)AE+CE=BE.理由见解析.
【解析】
(1)①四边形ABCD是正方形通过角的关系求出∠AFB且CE⊥AM,即可求出∠BCE.
②过点B作BG⊥BE,交AM于点G,由①中四边形ABCD是正方形易得∠ABG=∠CBE,再通过直角三角形内角和代换即可得到∠α=∠BCE,易得△ABG≌△CBE(ASA),在通过勾股定理即可得出AE+CE=BE.
(2)过点B作BG⊥BE,交AM于点G,由(1)中得到∠ABG=∠CBE,再通过直角三角形内角和代换即可得到∠DAH=∠DCE,延长DA交BG于N,易得∠BAG=∠BCE,即可得到△ABG≌△CBE(ASA),再通过勾股定理GE=BE,等量代换即可得出AE,BE,CE之间的数量关系.
(1)①∵四边形ABCD是正方形,∴∠ABC=90°,
∵∠BAF=35°,
∴∠AFB=90°﹣∠BAF=55°,
∴∠CFE=∠AFB=55°,
∵CE⊥AM,
∴∠CEF=90°,
∴∠ECF=90°﹣∠CFE=35°,
即:∠BCE=35°,
故答案为:35;
②AE=CE+BE.
证明:如图2,过点B作BG⊥BE,交AM于点G,
∴∠GBE=∠GBC+∠CBE=90°.
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=∠ABG+∠GBC=90°,
∴∠ABG=∠CBE.
∵∠ABC=90°,
∴∠α+∠AFB=90°,
∵∠CFE=∠AFB,
∴∠α+∠CFE=90°,
∵∠CEF=90°,
∴∠BCE+∠CFE=90°,
∴∠α=∠BCE.
在△ABG和△CBE中,
∠ABG=∠CBE,AB=BC,∠α=∠BCE,
∴△ABG≌△CBE(ASA),
∴AG=CE,BG=BE.
∵在Rt△BEG中,BG=BE,
∴GE=BE,
∴AE=AG+GE=CE+BE.
(2)理由:如图3,过点B作BG⊥BE,交AM于点G,
∴∠GBE=∠GBA+∠ABE=90°.
∵四边形ABCD为正方形,
∴AB=BC,∠D=∠ABC=∠ABE+∠EBC=90°,
∴∠ABG=∠CBE.
∵∠D=90°,
∴∠DAH+∠AHD=90°,
∵∠AHD=∠CHE,
∴∠DAH+∠CHE=90°,
∵∠CEA=90°,
∴∠DCE+∠CHE=90°,
∴∠DAH=∠DCE.
延长DA交BG于N,
∵∠NAG=∠DAH,∴∠NAG=∠DCE,
∴∠NAG+90°=∠DCE+90°,
∴∠BAG=∠BCE
在△ABG和△CBE中,
∠ABG=∠CBE,AB=BC,∠BAG=∠BCE,
∴△ABG≌△CBE(ASA),
∴AG=CE,BG=BE.
∵在Rt△BEG中,BG=BE,
∴GE=BE,
∴AE=GE﹣AG=BE﹣CE.
即:AE+CE=BE.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10,cosB=,点M是AB边的中点,将△ABC绕着点M旋转,使点C与点A重合,点A与点D重合,点B与点E重合,得到△DEA,且AE交CB于点P,那么线段CP的长是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).
(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQ、QB、BA之间的数量关系.
(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的两边OA、OC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.
①求此抛物线的解析式.
②过线段BP上一动点M(点M与点P、B不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长L与m之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:⊙O的一条切线,使这条切线经过点P.
作法:①连接OP,作OP的垂直平分线l,
交OP于点A;
②以A为圆心,AO为半径作圆,
交⊙O于点M;
③作直线PM,则直线PM即为⊙O的切线.
根据小芸设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接OM,
由作图可知,A为OP中点,
∴OP为⊙A直径,
∴∠OMP= °,( )(填推理的依据)
即OM⊥PM.
又∵点M在⊙O上,
∴PM是⊙O的切线.( )(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S10=_____.(n≥1的整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,下列四点中能与A、B构成直角三角形的顶点是( )
A. P1 B. P2 C. P3 D. P4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,求EM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com