精英家教网 > 初中数学 > 题目详情

【题目】中国古代三国时期的数学家赵爽,创作了一幅勾股弦方图,通过数形结合,给出了勾股定理的详细证明如图,在勾股弦方图中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作赵爽弦图张天同学要用细塑料棒制作赵爽弦图,若正方形ABCD与正方形EFCH的面积分别为16949,则所用细塑料棒的长度为______

【答案】100

【解析】

根据正方形的面积可得两个正方形的边长分别为137,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.

∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,

AEBF,∠AEB90°

∵正方形ABCD与正方形EFCH的面积分别为16949

AB13EF7

RtABE中,BEBFEFAE7

根据勾股定理,得

AE2+BE2AB2

AE2+AE72132

解得,AE12

所以BE1275

所以所用细塑料棒的长度为:4AB+AE)=413+12)=100

故答案为100

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知Q(﹣13),A04),点Px轴上一动点,以QP为腰作等腰RtQPH,当OH+AH最小时,点H的横坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,有两个可以自由转动的均匀转盘转盘A被平均分成3等份,分别标上三个数字;转盘B被平均分成4等份,分别标上四个数字.有人为甲、乙两人设计了一个游戏规则;自由转动转盘AB,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则为乙获胜.你认为这样的游戏规则是否公平?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+mx+nx轴于点A﹣20)和点B,交y轴于点C02).

1)求抛物线的函数表达式;

2)若点M在抛物线上,且SAOM=2SBOC,求点M的坐标;

3)如图2,设点N是线段AC上的一动点,作DNx轴,交抛物线于点D,求线段DN长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提升青少年的身体素质,郑州市在全市中小学推行“阳光体育”活动,河南省实验中学为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足球,购买篮球的个数比足球的个数少2个,足球的单价为篮球单价的

1)求篮球、足球的单价分别为多少元?

2)学校计划用不多于5200元购买篮球、足球共60个,那么至少购买多少个足球?

3)在(2)的条件下,若篮球数量不能低过15个,那么有多少种购买方案?哪种方案费用最少?最少费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,直线y=﹣x+6x轴、y轴分别交于BA两点,点P从点A开沿y轴以每秒1个单位长度的速度向点O运动,点Q从点A开始沿AB向点B运动(当PQ两点其中一点到达终点时,另一点也随之停止运动)如果点PQ从点A同时出发,设运动时间为t秒.

1)如果点Q的速度为每秒个单位长度,那么当t5时,求证:△APQ∽△ABO

2)如果点Q的速度为每秒2个单位长度,那么多少秒时,△APQ的面积为16

3)若点H为平面内任意一点,当t4时,以点APHQ四点为顶点的四边形是矩形,请直接写出此时点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+x+m1x轴于AB两点,交y轴于点C,若A点坐标为(x10)B点坐标为(x20)x1≠x2).

1)求m的取值范围;

2)如图1,若x12+x2217,求抛物线的解析式;

3)在(2)的条件下,请解答下列两个问题:

①如图1,请连接AC,求证:△ACB为直角三角形.

②如图2,若D(1n)在抛物线上,过点A的直线y=﹣x1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以PBD为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料:有这样一个问题:关于x的一元二次方程ax2+bx+c0a0)有两个不相等的且非零的实数根.探究abc满足的条件.

小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:

①设一元二次方程ax2+bx+c0a0)对应的二次函数为yax2+bx+ca0);

②借助二次函数图象,可以得到相应的一元二次中abc满足的条件,列表如下:

方程根的几何意义:

1)参考小明的做法,把上述表格补充完整;

2)若一元二次方程mx2﹣(2m+3x4m0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,如果某点的横坐标与纵坐标的和为10,则称此点为合适点例如,点(19),(﹣20192029都是合适点

1)求函数y2x+1的图象上的合适点的坐标;

2)求二次函数yx25x2的图象上的两个合适点AB之间线段的长;

3)若二次函数yax2+4x+c的图象上有且只有一个合适点,其坐标为(46),求二次函数yax2+4x+c的表达式;

4)我们将抛物线y2xn23x轴下方的图象记为G1,在x轴及x轴上方图象记为G2,现将G1沿x轴向上翻折得到G3,图象G2和图象G3两部分组成的记为G,当图象G上恰有两个合适点时,直接写出n的取值范围.

查看答案和解析>>

同步练习册答案