【题目】如图,抛物线y=x2+x﹣
与x轴相交于A,B两点,顶点为P.
(1)求点A,点B的坐标;
(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.
【答案】(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2
,2)或(﹣1,﹣2).
【解析】
(1)令y=0可求得相应方程的两根,则可求得A、B的坐标;
(2)可先求得P点坐标,则可求得点E到AB的距离,可求得E点纵坐标,再代入抛物线解析式可求得E点坐标.
(1)令y=0,则x2+x
0,
解得:x=﹣3或x=1,
∴A(﹣3,0),B(1,0);
(2)存在.理由如下:
∵yx2+x
(x+1)2﹣2,
∴P(﹣1,﹣2).
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
①当点E在x轴下方时,则E与P重合,此时E(﹣1,﹣2);
②当点E在x轴上方时,则可设E(a,2),
∴a2+a
2,解得:a=﹣1﹣2
或a=﹣1+2
,
∴E(﹣1﹣2,2)或E(﹣1+2
,2).
综上所述:存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2
,2)或(﹣1,﹣2).
科目:初中数学 来源: 题型:
【题目】已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC的度数为( )
A. 15° B. 75°或15° C. 105°或15° D. 75°或105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字外都相同。
(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(3分)
(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由。(6分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角板如图1放置(有一条边重合),如图2把含45°的直角三角板ACD绕点A顺时针旋转30°,得到△AC′D′,若BC=2,则△BCC′的面积为( )
A.2﹣3B.3﹣
C.4
﹣6D.6﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线的对称轴与x轴交于点A.
(1)A的坐标为 (用含a的代数式表示);
(2)若抛物线与x轴交于P,Q两点,且PQ=2,求抛物线的解析式.
(3)点B的坐标为,若该抛物线与线段AB恰有一个公共点,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).
(1)分别求m、n的值;
(2)连接OD,求△ADO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔
在北偏东
方向上,继续航行1小时到达
处,此时测得灯塔
在北偏东
方向上.
(1)求的度数;
(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD围成的封闭图形面积是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com