【题目】要建一个如图所示的面积为300m2的长方形围栏,围栏总长50m,一边靠墙(墙长25m).
(1)求围栏的长和宽;
(2)能否围成面积为400m2的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由.
【答案】(1)围栏长为20米,宽为15米;(2)不能,理由见详解.
【解析】
(1)设围栏的宽为x米,则围栏的长为(50-2x)米,根据题意列出关于x的一元二次方程,解方程求出x的值,然后由墙的长度得到x的取值范围,由此即可得出结论;
(2)假设能围成,列出关于x的一元二次方程,由根的判别式△<0,可得出该方程没有实数根,从而得出假设不成立,由此即可得出结论.
解:(1)设与墙相垂直的一边长为x米,则围栏的长为(50-2x)米,
∴x(50-2x)=300,
解得:x=10 或x=15,
∵当x=10时,
,故舍去;
∴围栏的宽为15米,长为:米;
(2)根据题意,假设能围成,则
x(50-2x)=400,
∴,
∴,
∴原方程无解.
故不能围成面积为400m2的长方形围栏.
科目:初中数学 来源: 题型:
【题目】问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.
(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.
(3)拓展延伸:如图2,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中,画出一个与△ABC成中心对称的格点三角形;
(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;
(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形;
(4)在图4中,画出所有格点△BCD,使△BCD为等腰直角三角形,且S△BCD=4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数的图象为C1.二次函数的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数( k,m为常数,k≠0)的图象经过A,B两点,当时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为2,O到顶点A的距离为5,点B在⊙O上,点P是线段AB的中点,若B在⊙O上运动一周.
(1)点P的运动路径是一个圆;
(2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小明遇到下面一个问题:
如图1所示,是的角平分线,,求的值.
小明发现,分别过,作直线的垂线,垂足分别为.通过推理计算,可以解决问题(如图2).请回答,________.
参考小明思考问题的方法,解决问题:
如图3,四边形中,平分,,.与相交于点.
(1)=______.
(2)=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,,点是射线上的一个动点(点与点不重合),点是线段上的一个动点(点与点不重合),连接,过点作的垂线,交射线于点连接.设
(1)当时,求关于的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段的中点,连接,若,求的长;
(3)如果动点在运动时,始终满足条件那么请探究:的周长是否随着动点的运动而发生变化?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD中,AB=2,BC=m,点E是边BC上一点,BE=1,连接AE.
(1)沿AE翻折△ABE使点B落在点F处,
①连接CF,若CF∥AE,求m的值;
②连接DF,若≤DF≤,求m的取值范围.
(2)△ABE绕点A顺时针旋转得△AB1E1,点E1落在边AD上时旋转停止.若点B1落在矩形对角线AC上,且点B1到AD的距离小于时,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com