【题目】已知,
(1) 如图1,若BD=DC,点C在AE的垂直平分线上。AB+BD与DE有什么关系?请给出证明。
(2) 如图2,若, AB+BD与DE是否还存在(1)中的关系?若存在,请给出证明,若不存在,请说明理由。
(3) 若,则AB+AE与AD+BE有怎样的关系?答:AB+AE AD+BE (填“>”,“<”或“=”)
【答案】(1)AB+BD=DE,理由见解析;(2)仍然成立,理由见解析;(3)<.
【解析】
(1)分别根据AD垂直平分BC和C在AE的垂直平分线上证明AB=AC=CE,BD=CD,由此可得AB+BD=DE;
(2)在DE上取点M,使BD=DM,根据AD⊥BM,BD=MD可证明∠B=∠AMB,再根据可证明∠MAE=∠E,由此可证明AM=ME=AB,即可证明AB+BD =DE;
(3)通过勾股定理可得,通过等面积法可得,再由完全平方公式可推理出,由此可证.
(1)AB+BD=DE,理由如下:
∵C在AE的垂直平分线上
∴AC=CE
又∵AD⊥BC,BD=CD
∴AD垂直平分BC
∴AB=AC, BD =CD
∴AB= CE
∴AB+BD=CE+CD=DE;
(2)仍然成立,理由如下:
如图,在DE上取点M,使BD=DM,连接AM
∵AD⊥BM,BD=MD,
∴AB=AM,
∴∠B=∠AMB=2∠E=∠E+∠MAE
∴∠MAE=∠E
∴AM=ME=AB
∴AB+BD=ME+DM=DE;
(3)∵,
∴在△ABE中根据勾股定理可得
由直角三角形的面积公式可得
即
∴
∵
∴,
∵线段的长度皆为正
∴
科目:初中数学 来源: 题型:
【题目】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销 x 件,已知产销两种产品的有关信息 如下:
产品 | 每件售价/万元 | 每件成本/万元 | 年最大产销量/件 |
甲 | 6 | 3 | 200 |
乙 | 20 | 10 | 80 |
甲、乙两产品每年的其他费用与产销量的关系分别是: y1 kx b 和 y2 ax2 m ,它们的函数图象分别如图(1)和图(2)所示.
(1)求: y1 、 y2 的函数解析式;
(2)分别求出产销两种产品的最大利润;(利润=销售额-成本-其它费用)
(3)若通过技术改进,甲产品的每件成本降到 a 万元,乙产品的年最大产销量可以达到 110 件,其它都不变,为获得最大利润,该公式应该选择产销哪种产品?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长.
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( )
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BC=EF.
(1)若两个三角形按图2方式放置,AC、DF交于点O,连接AD、BO,则AF与CD的数量关系为 ,BO与AD的位置关系为 ;
(2)若两个三角形按图3方式放置,其中C、B(D)、F在一条直线上,连接AE,M为AE中点,连接FM、CM.探究线段FM与CM之间的关系,并证明;
(3)若两个三角形按图4方式放置,其中B、C(D)、F在一条直线上,点G、H分别为FC、AC的中点,连接GH、BE交于点K,求证:BK=EK.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )
A.1.5B.1.8C.2D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,经过原点O的抛物线(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的转盘,分成三个相同的扇形,指针位置固定转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件“转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA为8米,距离O点2米处的棚高BC为米.
(1)求该抛物线的函数关系式;
(2)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com