精英家教网 > 初中数学 > 题目详情

【题目】如图,已知O的半径为5P是直径AB的延长线上一点,BP1CDO的一条弦,CD6,以PCPD为相邻两边作PCED,当CD点在圆周上运动时,线段PE长的最大值与最小值的差等于_____

【答案】16

【解析】

连接OC,设CDPE于点K,连接OK,求出OKOP的值,利用三角形的三边关系即可解决问题.

解:连接OC,设CDPE于点K,连接OK

四边形PCED是平行四边形,

∴EKPKCKDK

∴OK⊥CD

Rt△COK中,OC5CK3

∴OK4

∵OPOB+PB6

∴64≤PK≤6+4

∴2≤PK≤10

∴PK的最小值为2,最大值为10

∵PE2PK

∴PE的最小值为4,最大值为20

线段PE长的最大值与最小值的差=20416

故答案为:16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,将∠D60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN

(1)①求证:∠ANB=∠AMC

探究△AMN的形状;

(2)如图,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数轴于点,交轴于点,在轴上有一点,连接.

(1)求二次函数的表达式;

(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;

(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB,垂足为H,连结AC,过弧BD上一点EEGACCD的延长线于点G,连结AECD于点F,且EGFG,连结CE

1)求证:ECF∽△GCE

2)求证:EG是⊙O的切线;

3)延长ABGE的延长线于点M,若tanGAH3,求EM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30)的试营销,售价为9/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y()与销售时间x()之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,

(1)请直接写出yx之间的函数关系式;

(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?

(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=ADAC是∠BAD的角平分线.

1)求证:△ABC≌△ADC

2)若∠BCD60°,AC=BC,求∠ADB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,若CD与地面成45°,∠A60°,CD4m,则电线杆AB的长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠BAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=x>0)经过点C.将ABC沿y轴向上平移m个单位长度,使点A恰好落在双曲线上,则m的值为________

查看答案和解析>>

同步练习册答案