精英家教网 > 初中数学 > 题目详情

【题目】如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点PPQBD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长度是________cm.

【答案】

【解析】

根据运动速度乘以时间,可得P点运动的距离,根据线段的和差,可得CP的长,根据勾股定理,即可求出答案

解:由图②可知点P运动2.5秒,PBC上,

PQBD,得QCD上,且∠CQP=CDB=45°,即CQ=CP,

CP=AB+BC-2.5×2=8-5=3cm,

CQ=CP=3cm,

由勾股定理得:PQ==cm.

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一棵树CD10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PQ是直线y=x+2上的两点,点P在点Q的左侧,且满足OP=OQOPOQ,则点Q的坐标是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的外接圆,点E△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.

(1)求证:直线DM⊙O的切线;

(2)若DF=2,且AF=4,求BDDE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BDBCF,连接DF,GDF中点,连接EG,CG.

(1)请问EGCG存在怎样的数量关系,并证明你的结论;

(2)将图△BEFB点逆时针旋转45°,如图所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图△BEFB点旋转任意角度,如图所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在东西方向的海岸线MN上有A,B两艘船,船长都收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向36海里处,船P在船B顶点北偏西37°方向,若船A,船B分别以30海里/小时,20海里/小时的速度同时出发,匀速前往救援,通过计算判断哪艘船先到达船P处.(参考数据=1.73,sin37°=0.6,cos37°=0.80)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校有一块长方形活动场地,长为米,宽比长少米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加米.

(1)求活动场地原来的面积是多少平方米.(用含的代数式表示)

(2)若,求活动场地面积增加后比原来多多少平方米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=A=DCB.

(1)求证:ABE≌△CDB.

(2)连结DE,若∠CDB=60°,AEB=50°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在ABC中,∠ACB=90°AE是角平分线,CD是高,AECD相交于点F.求证:∠CFE=CEF

(变式思考)如图2,在ABC中,∠ACB=90°CDAB边上的高,若ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;

(探究廷伸)如图3,在ABC中,在AB上存在一点D,使得∠ACD=B,角平分线AECD于点FABC的外角∠BAG的平分线所在直线MNBC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案