精英家教网 > 初中数学 > 题目详情

【题目】图形在折叠过程中会形成相等的边和相等的角,下面是同学们在数学课上所做的三角形、四边形折叠实验,请根据实验过程解决问题:
问题(一)
如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
(1)如果沿直线DE折叠,使A点落在CE上,则∠BDA′和∠A的数量关系是
(2)如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是
(3)如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
(4)如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 . (直接写出结论)

【答案】
(1)∠BDA=2∠A
(2)∠BDA′+∠CEA′=2∠A
(3)解:∠BDA′﹣∠CEA′=2∠A.

证明如下:

连接AA′构造等腰三角形,

∠BDA′=2∠DA'A,∠CEA'=2∠EA'A,

得∠BDA'﹣∠CEA'=2∠A


(4)∠1+∠2=2(∠A+∠B)﹣360°
【解析】解:(1.)∵根据折叠的性质可知∠DA′E=∠A,∠DA′E+∠A=∠BDA′,′∴∠BDA=2∠A.
所以答案是:∠BDA=2∠A;
(2.)由图形折叠的性质可知,∠CEA′=180°﹣2∠DEA′…①,∠BDA′=180°﹣2∠A′DE…②,
①+②得,∠BDA′+∠CEA′=360°﹣2(∠DEA′+∠A′DE
即∠BDA′+∠CEA′=360°﹣2(180°﹣∠A),
故∠BDA′+∠CEA′=2∠A.
所以答案是:∠BDA′+∠CEA′=2∠A;
(4.)如图④,由图形折叠的性质可知∠1=180°﹣2∠AEF,∠2=180°﹣2∠BFE,
两式相加得,∠1+∠2=360°﹣2(∠AEF+∠BFE)
即∠1+∠2=360°﹣2(360°﹣∠A﹣∠B),
所以,∠1+∠2=2(∠A+∠B)﹣360°.
所以答案是:∠1+∠2=2(∠A+∠B)﹣360°.
【考点精析】认真审题,首先需要了解平行线的性质(两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补),还要掌握三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ab=﹣5,a﹣b=6,则a2+b2=(
A.13
B.19
C.26
D.37

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B、E、F、C依次在同一条直线上,AF⊥BC,DE⊥BC,垂足分别为F、E,且AB=DC,BE=CF.试说明AB∥DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+mx﹣6=0的一个根为2,则m的值及另一个根是(
A.1,3
B.﹣1,3
C.1,﹣3
D.﹣1,﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若4y2﹣my+25是一个完全平方式,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题两个直角相等的条件是________, 结论是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解一元一次不等式组: ,并将解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC纸片的一角折叠,使点C落在△ABC内一点C′上,若∠1=30°,∠2=36°,则∠C的度数是( )

A.33°
B.34°
C.31°
D.32°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若原产量为n吨,增产30%后的产量为(
A.30%n吨
B.(1﹣30%)n吨
C.(1+30%)n吨
D.(n+30%)吨

查看答案和解析>>

同步练习册答案