【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
【答案】
(1)
证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH= BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG= BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)
四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD
即∠APC=∠BPD,
在△APC和△BPD中,
,
∴△APC≌△BPD,
∴AC=BD
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF= AC,FG= BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)
四边形EFGH是正方形.
证明:如图2中,
设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
科目:初中数学 来源: 题型:
【题目】已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BCAD=AE2;④∠DFE=2∠DAC ;⑤若连接CH,则CH∥EF.其中正确的个数为( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个长方体的长为2a , 宽也是2a , 高为h.
(1)用a 、h的代数式表示该长方体的体积与表面积.
(2)当a=3,h= 时,求相应长方体的体积与表面积.
(3)在(2)的基础上,把长增加x , 宽减少x , 其中0<x<6,问长方体的体积是否发生变化,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是定圆O的内接三角形,AD为△ABC的高线,AE平分∠BAC交⊙O于E,交BC于G,连OE交BC于F,连OA,在下列结论中, ①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④为常量.其中正确的有______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断以下各题的结论是否正确(对的打“√”,错的打“×”).
(1)若 b﹣3a<0,则b<3a;
(2)如果﹣5x>20,那么x>﹣4;
(3)若a>b,则 ac2>bc2;
(4)若ac2>bc2 , 则a>b;
(5)若a>b,则 a(c2+1)>b(c2+1).
(6)若a>b>0,则< .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com