精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.

【答案】①证明:在△ABE和△CBD中,

∴△ABE≌△CBD(SAS);
②解:∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由①得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB为△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
则∠BDC=75°.
【解析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

下列说法正确的是(

A.这10名同学体育成绩的中位数为38分

B.这10名同学体育成绩的平均数为38分

C.这10名同学体育成绩的众数为39分

D.这10名同学体育成绩的方差为2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A( ,0)、B(3 ,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是(
A.2 ﹣2
B.2
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中半径均为1个单位长度的半圆O1O2O3,…组成一条平滑的曲线P从原点O出发沿这条曲线向右运动速度为每秒个单位长度则第2018秒时P的坐标是(  )

A. (2016,0) B. (2017,0) C. (2018,0) D. (2017,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有两根直杆隔河相对,杆CD30m,杆AB20m,两杆相距50m.现两杆上各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮起一条小鱼,于是以同样的速度同时飞下来夺鱼,结果两只鱼鹰同时到达,叼住小鱼.问两杆底部距鱼的距离各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小林沿着笔直的公路靠右匀速行走,发现每隔5分钟从背后驶过一辆101路公交车,每隔3分钟从迎面驶来一辆101路公交车.假设每个每辆101路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是(  )

A. 3分钟 B. 3.75分钟 C. 4分钟 D. 5分钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.

(1)求证:四边形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O在直径,AD,BC分别切⊙O于A,B两点,CD切⊙O于点E,连接OD,OC,下列结论:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正确的有(

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

同步练习册答案