【题目】将下列各式因式分解
(1)2a3b﹣8ab3
(2)﹣x3+x2y﹣xy2
(3)(7x2+2y2)2﹣(2x2+7y2)2
(4)(x2+4x)2+(x2+4x)﹣6
【答案】(1)2ab(a+2b)(a﹣2b);(2)﹣x(x﹣y)2;(3)45((x2+y2)(x﹣y)(x+y);(4)(x+1)(x+3)(x+2+)(x+2﹣).
【解析】
(1)首先提取公因式2ab,进而利用平方差公式分解因式即可;
(2)首先提取公因式﹣x,进而利用完全平方公式分解因式即可;
(3)直接利用平方差公式分解因式进而得出答案;
(4)直接利用十字相乘法分解因式进而得出答案.
(1)2a3b﹣8ab3
=2ab(a2﹣4b2)
=2ab(a+2b)(a﹣2b);
(2)﹣x3+x2y﹣xy2
=﹣x(x2﹣xy+y2)
=﹣x(x﹣y)2;
(3)(7x2+2y2)2﹣(2x2+7y2)2
=(7x2+2y2+2x2+7y2)(7x2+2y2﹣2x2﹣7y2)
=(9x2+9y2)(5x2﹣5y2)
=9×5(x2+y2)(x2﹣y2)
=45((x2+y2)(x﹣y)(x+y);
(4)(x2+4x)2+(x2+4x)﹣6
=(x2+4x﹣2)(x2+4x+3)
=(x+1)(x+3)(x+2+)(x+2﹣).
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有________个。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(满分12分)在平面直角坐标系中,抛物线与轴的两个交点
分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:= ,b= ,顶点C的坐标为 ;
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正确的是( )
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;
(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点P作PM⊥OE交OD于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△ECD,连接BE,交AC于F.
(1)猜想AC与BE的位置关系,并证明你的结论;
(2)求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD和正方形AEFG的边长分别为2和,点B在边AG上,点D在线段EA的延长线上,连接BE.
(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.
(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;
(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“共建环保模范城,共享绿色新重庆”,市政府强力推进城市生活污水处理、生活垃圾处理设施建设改造工作.为此,某化工厂在一期工程完成后购买了4台甲型和5台乙型污水处理设备,共花费资金102万元,且每台乙型设备的价格比每台甲型设备价格少3万元.已知每台甲型设备每月能处理污水240吨,每台乙型设备每月能处理污水180吨.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共12台用于二期工程的污水处理,预算本次购买资金不超过129万元,预计二期工程完成后每月将产生不少于2220吨污水.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?
(2)请你求出用于二期工程的污水处理设备的所有购买方案;
(3)请你说明在(2)的所有方案中,哪种购买方案的总花费最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com