精英家教网 > 初中数学 > 题目详情

【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.

(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

【答案】
(1)证明:连接OE

FE、FA是⊙O的两条切线

∴∠FAO=∠FEO=90°

在Rt△OAF和Rt△OEF中,

∴Rt△FAO≌Rt△FEO(HL),

∴∠AOF=∠EOF= ∠AOE,

∴∠AOF=∠ABE,

∴OF∥BE,


(2)解:过F作FQ⊥BC于Q

∴PQ=BP﹣BQ=x﹣y

PF=EF+EP=FA+BP=x+y

∵在Rt△PFQ中

∴FQ2+QP2=PF2

∴22+(x﹣y)2=(x+y)2

化简得: ,(1<x<2)


(3)解:存在这样的P点,

理由:∵∠EOF=∠AOF,

∴∠EHG=∠EOA=2∠EOF,

当∠EFO=∠EHG=2∠EOF时,

即∠EOF=30°时,Rt△EFO∽Rt△EHG,

此时Rt△AFO中,

y=AF=OAtan30°=

∴当 时,△EFO∽△EHG


【解析】(1)根据正方形和切线的性质得到Rt△FAO≌Rt△FEO,得到∠AOF=∠ABE,根据平行线的判定方法得到OF∥BE;(2)根据切线性质得到PF=EF+EP=FA+BP,根据勾股定理求出BP,AF的关系;(3)根据正方形的性质和相似三角形的判定得到Rt△EFO∽Rt△EHG,根据直角三角形中特殊角的函数值求出x、y的值,得到△EFO∽△EHG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A,D,C,E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.

(1)求AD的长;
(2)求点E到AB的距离(结果保留整数).
(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积为.第一次操作:分别延长至点,使,顺次连接,得到△.第二次操作:分别延长至点,使,顺次连接,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

1)如图1,可以求出阴影部分的面积是   (写成两数平方差的形式);

2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是   ,长是   ,面积是   (写成多项式乘法的形式);

3)比较图1、图2阴影部分的面积,可以得到公式   

4)运用你所得到的公式,计算下列各题:

① 20.2×19.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,的顶点都在格点上,建立平面直角坐标系,

1)点A的坐标为______,点C的坐标为______

2)将先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的,并分别写出点A1B1C1的坐标;

3)求的面积.

0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC∠B=90°AG∥CDBC于点G,点EF分别为AGCD的中点,连接DEFG

1)求证:四边形DEGF是平行四边形;

2)当点GBC的中点时,求证:四边形DEGF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.

出发2秒后,求的面积;

t为几秒时,BP平分

t为何值时,为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.

(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

同步练习册答案