【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.
(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
【答案】
(1)证明:连接OE
FE、FA是⊙O的两条切线
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,
∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF= ∠AOE,
∴∠AOF=∠ABE,
∴OF∥BE,
(2)解:过F作FQ⊥BC于Q
∴PQ=BP﹣BQ=x﹣y
PF=EF+EP=FA+BP=x+y
∵在Rt△PFQ中
∴FQ2+QP2=PF2
∴22+(x﹣y)2=(x+y)2
化简得: ,(1<x<2)
(3)解:存在这样的P点,
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,
即∠EOF=30°时,Rt△EFO∽Rt△EHG,
此时Rt△AFO中,
y=AF=OAtan30°= ,
∴
∴当 时,△EFO∽△EHG
【解析】(1)根据正方形和切线的性质得到Rt△FAO≌Rt△FEO,得到∠AOF=∠ABE,根据平行线的判定方法得到OF∥BE;(2)根据切线性质得到PF=EF+EP=FA+BP,根据勾股定理求出BP,AF的关系;(3)根据正方形的性质和相似三角形的判定得到Rt△EFO∽Rt△EHG,根据直角三角形中特殊角的函数值求出x、y的值,得到△EFO∽△EHG.
科目:初中数学 来源: 题型:
【题目】为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A,D,C,E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.
(1)求AD的长;
(2)求点E到AB的距离(结果保留整数).
(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为.第一次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△.第二次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式 ;
(4)运用你所得到的公式,计算下列各题:
① 20.2×19.8 ;
②.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,的顶点都在格点上,建立平面直角坐标系,
(1)点A的坐标为______,点C的坐标为______;
(2)将先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的,并分别写出点A1、B1、C1的坐标;
(3)求的面积.
0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.
出发2秒后,求的面积;
当t为几秒时,BP平分;
问t为何值时,为等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com