精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的面积为.第一次操作:分别延长至点,使,顺次连接,得到△.第二次操作:分别延长至点,使,顺次连接,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作(  )

A.B.C.D.

【答案】A

【解析】

先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.

解:连接A1C,如图,

ABA1B

∴△ABC与△A1BC的面积相等,

∵△ABC面积为1

1

BB12BC

2

同理可得,22

2+2+2+17

同理可得:△A2B2C2的面积=7×△A1B1C1的面积=49

第三次操作后的面积为7×49343

第四次操作后的面积为7×3432401

故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的顶点都在正方形网格的格点(网格线的交点)上.

1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1

2)画出△ABC的中线AD

3)画出△ABC的高CE所在直线,标出垂足E

4)在(1)的条件下,线段AA1CC1的关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m∠ACD.

(1)已知 ,求m的值,及∠BCD、∠ACD的度数各是多少?
(2)在(1)的条件下,且 ,求弦CD的长;
(3)当 时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:

(1)如果AB=AC,∠BAC=90°
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为 , 数量关系为
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?
(2)如图4,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD平分BACBDAD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函数y=在第一象限的图象经过点B,则OACBAD的面积之差SOACSBAD为(  )

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.

(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A21),B24).

1)若直线ly=x+bAB有一个交点.

b的取值范围为_______________

2)若直线ly=kxAB有一个交点.

k的取值范围为_______________

查看答案和解析>>

同步练习册答案