精英家教网 > 初中数学 > 题目详情

【题目】如图,P是线段AB上一点,C、D两点分别从P、B出发以1cm/s、2 cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)

(1)C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:

(2)(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求的值。

(3)(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.

【答案】(1)点P在线段AB上的处;(2);(3)的值不变.

【解析】

(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQAB的关系;
(3)当点C停止运动时,有CD=AB,从而求得CMAB的数量关系;然后求得以AB表示的PMPN的值,所以MN=PNPM=AB.

解:(1)由题意:BD=2PC

PD=2AC,

BD+PD=2(PC+AC),即PB=2AP.

∴点P在线段AB上的处;

(2)如图:

AQ-BQ=PQ,

AQ=PQ+BQ,

AQ=AP+PQ,

AP=BQ,

PQ=AB,

(3)的值不变.

理由:如图,

当点C停止运动时,有CD=AB,

CM=AB,

PM=CM-CP=AB-5,

PD=AB-10,

PN=AB-10)=AB-5,

MN=PN-PM=AB,

当点C停止运动,D点继续运动时,MN的值不变,

所以.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好的决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:

1)此次抽样调查的样本容量是

2)补全频数分布直方图,求扇形图中“吨”部分的圆心角的度数.

3)如果自来水公司将基本用水量定为每户吨,那么该地区万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知l1l2,线段MA分别与直线l1l2交于点AB,线段MC分别与直线l1l2交于点CD,点P在线段AM上运动(P点与ABM三点不重合),设∠PDBα,∠PCAβ,∠CPDγ

1)若点PAB两点之间运动时,若a25°β40°,那么γ   

2)若点PAB两点之间运动时,探究αβγ之间的数量关系,请说明理由;

3)若点PBM两点之间运动时,αβγ之间有何数量关系?(只需直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夏季是垂钓的好季节.一天甲、乙两人到松花江的处钓鱼,突然发现在处有一人不慎落入江中呼喊救命.如图,在处测得处在的北偏东方向,紧急关头,甲、乙二人准备马上救人,只见甲马上从处跳水游向处救人;此时乙从沿岸边往正东方向奔跑40米到达处,再从处下水游向处救人,已知处在的北偏东方向上,且甲、乙二人在水中游进的速度均为1/秒,乙在岸边上奔跑的速度为8/秒.(注:水速忽略不计)

1)求的长.

2)试问甲、乙二人谁能先救到人,请通过计算说明理由.(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,菱形的对角线相交于点,过点,连接,连接于点

1)求证:

2)如图2,延长相交于点,不添加任何辅助线的情况下,直接写出图中所有的平行四边形.(除四边形和四边形外)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为开展全科大阅读活动,学校花费了3400元在书店购买了40套古典文学书籍和20套现代文学书籍,每套现代文学书籍比每套古典文学书籍多花20.

1)求每套古典文学习书籍和现代文学书籍分别是多少元?

2)为满足学生的阅读需求,学校计划用不超过2500元再次购买古典文学和现代文学书籍共40套,经市场调查得知,每套古典文学书籍价格上浮了20%,每套现代文学书籍价格下调了10%,学校最多能购买多少套现代文学书籍?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数的图象交于A21),B1n)两点.

1)试确定上述反比例函数和一次函数的表达式.

2)求△AOB的面积.

3)比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福州电信公司开设了AB两种市内移动通信业务:A种使用者每月需缴18元月租费,然后每通话1分钟,再付话费0.1元;B种使用者不缴月租费,每通话1分钟,付话费0.3元.若一个月内通话时间为x分钟,AB两种的费用分别为元.

1)试分别写出x之间的函数关系式;

2)每月通话时间为多长时,开通A种业务和B种业务费用一样.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数y=ax2x+c的图象经过点A01),B3 ),A点在y轴上,过点BBCx轴,垂足为点C

(1)求直线AB的解析式和二次函数的解析式;

(2)点N是二次函数图象上一点(点NAB上方),过NNP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

(3)点N是二次函数图象上一点(点NAB上方),是否存在点N,使得BMNC相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案