【题目】如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.
(1)求b和c的值;
(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;
(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.
【答案】(1)b=,c=﹣;(2),;(3)点Q的坐标为:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).
【解析】
(1)直线与轴交于点,与轴交于点,则点、的坐标分别为:、,则点,抛物线经过点和点,则,将点的坐标代入抛物线表达式并解得:;
(2)过点作轴的平行线交于点,设出点P,H的坐标,将△PAB的面积表示成△APH和△BPH的面积之和,可得函数表达式,可求△PAB的面积最大值,此时设点P到AB的距离为d,当△PAB的面积最大值时d最大,利用面积公式求出d.
(3)若存在以,,,为顶点且为边的平行四边形时,平移AP,得出所有可能的情形,利用平行四边形的对称性得到坐标的关系,即可求解.
解:(1)直线与轴交于点,与轴交于点,
令x=0,则y=,令y=0,则x=-3,
则点、的坐标分别为:、,
∵点F是点B关于x轴的对称点,
∴点,
∵抛物线经过点和点,则,
将点代入抛物线表达式得:,
解得:,
故抛物线的表达式为:,
,;
(2)过点作轴的平行线交于点,
设点,则点,
则的面积:
当时,
,
且,
∴的最大值为,此时点,,
设:到直线的最大距离为,
,解得:;
(3)存在,理由:
点,点,,设点,,
①当点在轴上时,
若存在以,,,为顶点且为边的平行四边形时,如图,
三种情形都可以构成平行四边形,
由于平行四边形的对称性可得图中点Q到x轴的距离和点P到x轴的距离相等,
∴,
即,
解得:(舍去)或或;
②当点在轴上时,如图:
当点Q在y轴右侧时,由平行四边形的性质可得:
=3,
∴
∴m=,代入二次函数表达式得:y=
当点Q在y轴左侧时,由平行四边形的性质可得:
=,
∴,
∴,代入二次函数表达式得:y=
故点,或,;
故点的坐标为:,或,或,或,或,.
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形 ABCD 中,AD / /BC ,AD CD ,M 为腰 AB 上一动点,联结 MC 、MD , AD 10, BC 15 , cot B ,求:
(1)线段CD 的长.
(2)设线段 BM 的长为 x ,△CDM的面积为 y ,求 y 关于 x 的函数解析式,并写出它的定义域.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应“学雷锋、树新风、做文明中学生”的号召,某校开展了志愿者服务活动,活动项目有“防疫宜宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”五项,活动期间,随机抽取了部分学生对志思者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如下不完整的条形统计图和扇形统计图.
根据以上统计图解答下列问题:
(1)本次随机抽取的学生共有______名;
(2)补全条形统计图;
(3)若该校有3000名学生,请估计参与了4项活动的学生人数;
(4)在所调查的学生中随机选取一人谈活动心得,求选中参与了5项活动的学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.
(1)求该车间的日废水处理量m;
(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点为边的中点,请按下列要求作图,并解决问题:
(1)作点关于的对称点;
(2)在(1)的条件下,将绕点顺时针旋转,
①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);
②若,则________.(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com