精英家教网 > 初中数学 > 题目详情

【题目】已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:

(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

【答案】
(1)

解:上述结论①,②仍然成立,

理由为:∵四边形ABCD为正方形,

∴AD=DC,∠BCD=∠ADC=90°,

在△ADF和△DCE中,

∴△ADF≌△DCE(SAS),

∴AF=DE,∠DAF=∠CDE,

∵∠ADG+∠EDC=90°,

∴∠ADG+∠DAF=90°,

∴∠AGD=90°,即AF⊥DE


(2)

解:上述结论①,②仍然成立,

理由为:∵四边形ABCD为正方形,

∴AD=DC,∠BCD=∠ADC=90°,

在△ADF和△DCE中,

∴△ADF≌△DCE(SAS),

∴AF=DE,∠CDE=∠DAF,

∵∠ADG+∠EDC=90°,

∴∠ADG+∠DAF=90°,

∴∠AGD=90°,即AF⊥D


(3)

解:四边形MNPQ是正方形.

理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,

∵点M,N,P,Q分别为AE,EF,FD,AD的中点,

∴MQ=PN= DE,PQ=MN= AF,MQ∥DE,PQ∥AF,

∴四边形OHQG是平行四边形,

∵AF=DE,

∴MQ=PQ=PN=MN,

∴四边形MNPQ是菱形,

∵AF⊥DE,

∴∠AOD=90°,

∴∠HQG=∠AOD=90°,

∴四边形MNPQ是正方形.


【解析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN= DE,PQ=MN= AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图①②分别是某种型号跑步机的实物图与示意图.已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE12°,支架AC长为0.8m,ACD80°,求跑步机手柄的一端A的高度h(精确到0.1m).

(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各式:
=1+ =1
=1+ =1
=1+ =1
请你根据上面三个等式提供的信息,猜想:
(1) =
(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:
(3)利用上述规律计算: (仿照上式写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将二次函数yx2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为(

A.y=(x12+3B.y=(x+12+3C.y=(x123D.y=(x+123

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是(

A.30
B.34
C.36
D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三角形的两边长分别为57,则该三角形的周长可能是(  )

A. 12 B. 14 C. 15 D. 25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四根长度分别为9、12、16、25的木条,从中取三根搭三角形,有几种选法?为什么?

查看答案和解析>>

同步练习册答案