【题目】如图,直线y1=x+b与双曲线y2=交于点A(1,4)和点B,经过点A的另一条直线与双曲线y2=交于点C.则:
①直线AB的解析式为y1=x+3;
②B(﹣1,﹣4);
③当x>1时,y2<y1;
④当AC的解析式为y=4x时,△ABC是直角三角形.
其中正确的是 .(把所有正确结论的序号都写在横线上)
【答案】①③④.
【解析】
试题分析:∵直线y1=x+b与双曲线y2=交于点A(1,4),∴4=1+b,4=,∴b=3,k=4,
∴直线AB的解析式为y1=x+3,双曲线的解析式为y2=,故①正确;
把y1=x+3代入y2=,得x+3=,整理得,x2+3x﹣4=0,解得x=﹣4或1,当x=﹣4时,y1=﹣4+3=﹣1,∴B点坐标为(﹣4,﹣1),故②错误;
由图象可知,y2<y1时,﹣4<x<0或x>1,∴当x>1时,y2<y1,故③正确;
当AC的解析式为y=4x时,把y=4x代入y2=,得4x=,整理得,4x2=4,
解得x=±1,当x=﹣1时,y=﹣4,∴C(﹣1,﹣4).∵A(1,4),B(﹣4,﹣1),C(﹣1,﹣4),∴AB2=(﹣4﹣1)2+(﹣1﹣4)2=50,BC2=(﹣1+4)2+(﹣4+1)2=18,AC2=(﹣1﹣1)2+(﹣4﹣4)2=68,∴AB2+BC2=AC2,∴△ABC是直角三角形.
则正确的结论是①③④.
科目:初中数学 来源: 题型:
【题目】请将下列证明过程补充完整:
已知:如图,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求证:AB∥CD.
证明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性质)
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四边形AOBC的面积.
(3)是否存在点P(x,﹣ x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形(记作)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是,,,先将向上平移3个单位长度,再向右平移2个单位长度,得到.
(1)在图中画出;
(2)点,,的坐标分别为______、________、_________;
(3)若有一点,使与面积相等,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年4月23日,第23个世界读书日.为了推进中华传统文化教育,营造浓郁的读书氛围,我区某学校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此特为每个班级订购了一批新的图书.初二年级两个班订购图书情况如下表:
老舍文集(套) | 四大名著(套) | 总费用(元) | |
初二(1)班 | 4 | 2 | 480 |
初二(2)班 | 2 | 3 | 520 |
(1)求老舍文集和四大名著每套各是多少元;
(2)学校准备再购买老舍文集和四大名著共10套,总费用不超过700元,问学校有哪几种购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,
(1)求证:△BCE≌△ACD;
(2)求证:FC=HC
(3)求证:FH∥BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公交车每月的支出费用为4000元,每月的乘车人数(人)与每月利润(利润=收入费用-支出费用)(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);
(1)在这个变化过程中, 是自变量, 是因变量;(填中文)
(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损;
(3)请你估计当每月乘车人数为3500人时,每月利润为 元?
(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求二次函数的表达式;
(2)设上述抛物线的对称轴l与x轴交于点D,过点C作CE⊥l于E,P为线段DE上一点,Q(m,0)为x轴负半轴上一点,以P、Q、D为顶点的三角形与△CPE相似;
①当满足条件的点有且只有三个时,求的取值范围;
②若满足条件的点有且只有两个,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com