分析 连接OC,根据垂径定理得出CE=ED=$\frac{1}{2}$CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB-OE,即可求出BE的长度.
解答
解:如图,连接OC.
∵弦CD⊥AB于点E,CD=6,
∴CE=ED=$\frac{1}{2}$CD=3.
∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,
∴OE=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∴BE=OB-OE=4-$\sqrt{7}$.
故答案为4-$\sqrt{7}$.
点评 本题主要考查了垂径定理,勾股定理等知识,关键在于熟练的运用垂径定理得出CE、ED的长度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 8或17 | D. | 7或17 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com