【题目】如图,抛物线W的图象与x轴交于A、O两点,顶点为点B(﹣1,﹣1).
(1)求抛物线W的表达式;
(2)将抛物线W绕点A旋转180°得到抛物线V,使抛物线V的顶点为E,试通过计算判断抛物线V是否过点B;
(3)在抛物线W或V的图象上是否存在点D,使S△EBD=S△EBO?若存在,请求出点D的坐标.
【答案】(1)y=(x+1)2﹣1;(2)抛物线V是不经过点B;(3)在抛物线W或V的图象上存在点D,使S△EBD=S△EBO,D的坐标为(﹣3,3)或(﹣4,0)或(﹣1,﹣3).
【解析】
(1)把抛物线的解析式设成顶点式,代入原点坐标,便可求得解;
(2)根据对称性质求得E点坐标,再根据变化后的抛物线的形状和大小与原抛物线相同,开口方向相反,得新抛物线的解析式的二次项系数是原抛物线解析式的二次项系数的相反数,进而新抛物线的解析式,再验证是否经过B点便可;
(3)存在点D,过O点作BE的平行线,此平行线与抛物线W的另一交点便是D点,过(-4,0)作BE的平行线,此平行线与抛物线V的交点便是D点,求出这些交点的坐标便可.
(1)∵抛物线的顶点为B(﹣1,﹣1),
∴可设抛物线的解析式为y=a(x+1)2﹣1,
把O(0,0)代入,得0=a﹣1,
∴a=1,
∴抛物线的解析式为:y=(x+1)2﹣1;
(2)令y=0,有y=(x+1)2﹣1=0,
解得,x=0或﹣2,
∴A(﹣2,0),
∵将抛物线W绕点A旋转180°得到抛物线V,使抛物线V的顶点为E,B(﹣1,﹣1),
∴E(﹣3,1),
设抛物线V的解析式为:y=a'(x+3)2+1(a'≠0),
∵将抛物线W绕点A旋转180°得到抛物线V,抛物线W的解析式为:y=(x+1)2﹣1,
∴a'=﹣1,
∴抛物线V的解析式为:y=﹣(x+3)2+1,
当x=﹣1时,y=﹣4+1=﹣3≠﹣1,
∴抛物线V是不经过点B;
(3)设直线BE的解析式为:y=kx+b(k≠0),则
,
解得,
∴直线BE的解析式为:y=﹣x﹣2,
过O作OD//BE,与抛物线W交于D点,如图1,则S△OBE=S△DBE,
设OD的解析式为:y=﹣x+m,
把O(0,0)代入得,m=0,
∴OD的解析式为:y=﹣x,
联立方程组,
解得或,
∴D(﹣3,3);
过抛物线V与x轴的交点F(﹣4,0)作FG//BE,与抛物线V交于另一点G,如图2,
∵OA=AF=2,
∴S△OAE=S△AEF,S△OAB=S△ABF,
∴S△OBE=S△BEF=S△BEG,
设直线FG的解析式为:y=﹣x+n,
把F(﹣4,0)代入得n=﹣4,
∴直线FG的解析式为:y=﹣x﹣4,
联立方程组,
解得或,
∴G(﹣1,﹣3),
当D点与F或G重合时,S△EBD=S△EBO,
此时D(﹣4,0)或(﹣1,﹣3),
综上,在抛物线W或V的图象上存在点D,使S△EBD=S△EBO,D的坐标为(﹣3,3)或(﹣4,0)或(﹣1,﹣3).
科目:初中数学 来源: 题型:
【题目】某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件。
(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?
(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣2,3),点B的坐标为(4,n).
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使△APC是直角三角形?若存,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH,若EH=4,EF=5,那么线段AD与AB的比等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:.舞蹈;.绘画与书法;.球类;.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:
(1)这次统计共抽查了_________名学生,请补全条形统计图;
(2)该校共有600名学生,根据以上信息,请你估计全校学生中想参加类活动的人数;
(3)若甲、乙两名同学,各自从三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书总的经费不超过1100元,要求购买的乙种图书是甲种图书的2倍,则甲种图书至多能购买多少本?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.
问题发现:
当时,_____;当时,_____.
拓展探究:
试判断:当时,的大小有无变化?请仅就图2的情况给出证明.
问题解决:
当旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com