精英家教网 > 初中数学 > 题目详情

【题目】若关于x的一元二次方程x22x+m0有两个相等的实数根,则m的值是(  )

A.1B.0C.1D.2

【答案】C

【解析】

根据题意可得一元二次方程根的判别式值等于0,求出m即可.

解:∵关于x的一元二次方程x22x+m0有两个相等的实数根,

∴△=b24ac=(﹣224×1×m44m0

m1

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数(x0)的图象与直线y=x交于点M,AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.

(1)求k的值;

(2)点P在反比例函数(x0)的图象上,若点P的横坐标为3,EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.

(1)求线段AB的长;

(2)求直线CE的解析式;

(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2+2(m-3)x+16是完全平方式,则m的值等于(

A. 3 B. -5 C. -71 D. 7-1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).

(1)写出D的坐标和直线l的解析式;

(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;

(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形正确的是( )
A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5
B.﹣3x=2变形得
C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6
D. 变形得4x﹣6=3x+18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a2+b+5=0,则代数式3a2+3b+10=0的值为(

A. 25 B. 5 C. -5 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个体育用品商店出售乒乓球拍和乒乓球,球拍每块价格为48元,乒乓球每个价格为2元,已知甲店制定的优惠方法是买一块球拍送6个乒乓球,乙店按总价的90%收费,某球队需要买球拍4块,乒乓球若干(不少于24个).
(1)当购买多少个乒乓球时,两个商店的收费一样多?
(2)当需要购买240个乒乓球时,选择哪家商店购买更优惠?请说明理由.

查看答案和解析>>

同步练习册答案