【题目】如图,在平面直角坐标系中,原点O是矩形OABC的一个顶点,点A、C都
在坐标轴上,点B的坐标是(4.2),反比例函数与AB,BC分别交于点D,E。
(1)求直线DE的解析式;
(2)若点F为y轴上一点,△OEF和△ODE的面积相等,求点F的坐标。
【答案】(1). (2)F的坐标为(0,3)或(0,-3).
【解析】试题分析:(1)先求出D、E的坐标,然后用待定系数法即可求出直线的解析式;
(2)先求出△ODE的面积,然后由△OEF和△ODE的面积相等,求出OF的长,即可得到结论.
试题解析:解:(1)由B(4,2)知,点D的横坐标是4,点E的纵坐标是2,
又∵点D,E都在的图象上,∴D(4,1),E(2,2).
设直线DE的解析式为,把D(4,1),E(2,2)代入,得:
解得:
∴直线DE的解析式为.
(2)∵D(4,1),E(2,2),B(4,2),
∴S△ODE= S矩形OABC - S△OCE - S△BDE- S△OAD =3.
∵点F为y轴上一点,S△OEF=S△ODE,
∴S△OEF.
∴OF=3.
∴F的坐标为(0,3)或(0,-3).
科目:初中数学 来源: 题型:
【题目】如图,将ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=12,弦AC=10,D是弧BC的中点,过点D作DE⊥AC,交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图上象有三个点(2,y1),(3,y2),(﹣1,y3),则y1,y2,y3的大小关系是( )
A. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y3>y2>y1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)2+4+6+8+10+12=__________ (乘积的形式)
(2)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;
(3)并按此规律计算:(a)2+4+6+…+300的值; (b)172+174+176+…+500的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正n边形的周长为60,边长为a
(1)当n=3时,请直接写出a的值;
(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学复习课上,张老师出示了下框中的问题:
已知:在Rt△ACB中,∠C=90°,点D是斜边AB上的中点,连接CD.
求证:CD=AB.
问题思考
(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B作BE∥AC交CD的延长线于点E。请你根据这位同学的思路提示证明上述框中的问题.
方法迁移
(2)如图2,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC上一动点,连接DE,线段DF始终与DE垂直且交BC于点F。试猜想线段AE,EF,BF之间的数量关系,并加以证明.
拓展延伸
(3)如图3,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC延长线上一动点,连接DE,线段DF始终与DE垂直且交CB延长线于点F。试问第(2)小题中线段AE,EF,BF之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC 的位置如图所示:(每个小方格都是边长为 1 个单位长度的正方形)
(1)将△ABC 沿 y 轴方向向下平移 4 个单位长度得到 则点 坐标为_______;
(2)将△ABC 绕着点 O 逆时针旋转 90°,画出旋转后得到的;
(3)直接写出点, 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com