【题目】如图,将边长为1的正方形纸片ABCD折叠,使点B的对应点M落在边CD上(不与点C、D重合),折痕为EF,AB的对应线段MG交AD于点N.以下结论正确的有( )①∠MBN=45°;②△MDN的周长是定值;③△MDN的面积是定值.
A.①②B.①③C.②③D.①②③
【答案】A
【解析】
连接BM、BN,作BP⊥MN于P.只要证明△BMP≌△BMC,可得MP=MC,∠PBM=∠CBM,同理可证:NA=NP,∠ABN=∠PBN,由此可判断①②正确.
连接BG、BE,作BP⊥EF于P,如图所示:
由折叠性质可得:BF=FM,
∴∠MBF=∠FMB,
∵四边形ABCD是正方形,
∴∠C=∠ABC=∠NMF=90°,
∴∠CBM+∠BMC=90°,∠BMF+∠NMB=90°,
∴∠BMC=∠NMB,
又∵BP⊥MN,BC⊥DC,
∴BP=BC,且∠BMC=∠NMB,BM=BM
∴△BPM≌△BCM(SAS),
∴MP=MC,∠PBM=∠CBM,
同理可证:NA=NP,∠ABN=∠PBN,
∴△MND的周长=DN+DM+MN=DN+AN+DM+CM=AD+CD=2,
∴△DGE的周长始终为定值.
∵∠ABN+∠PBN+∠PBM+∠CBM=90°
∴∠MBN=45°;
∵DM,DN的值不确定,
∴△MDN的面积不确定,
∴③错误.
故①②正确
故选:A.
科目:初中数学 来源: 题型:
【题目】(1)如图①,四边形 ABCD 是正方形,点 G 是 BC 上的任意一点,BF AG 于点 F,DE AG于点 E,探究 BF,DE,EF 之间的数量关系.第一学习小组合作探究后,得到DE–BF= EF,请证明这个结论;
(2)若(1)中的点 G 在 CB 的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时 BF,DE,EF 之间的数量关系;
(3)如图 ③ ,四边形 ABCD 内接于 ⊙O,AB=AD,E ,F 是AC 上的两点,且满足∠AED=∠BFA=∠BCD.试判断 AC,DE,BF 之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角△OAB的斜边OB在x轴上,且OB=4,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,则点D坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数两个数位上数字的和等于另一个数位上的数字,则称这个三位数为“均衡三位数”.现从1,2,3,4,5这5个数字中任取三个数字,组成无重复数字且百位数字、十位数字、个位数字依次增大的三位数.
(1)请列举出所有可能得到的三位数;
(2)小明和小亮玩一个游戏,游戏规则如下:若(1)中组成的三位数是“均衡三位数”,则小明胜;否则小亮胜.这个游戏公平吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,CAB=60°,点O为斜边AB上一点,且OA=2,以OA为半径的⊙O与BC相切于D,与AC交于点E,连接AD.
(1)求线段CD的长;
(2)求⊙O与Rt△ABC重叠部分的面积.(结果保留准确值)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C是线段AB上一点,AC=AB,BC为⊙O的直径.
(1)在图1直径BC上方的圆弧上找一点P,使得PA=PB;(用尺规作图,保留作图痕迹,不要求写作法)
(2)连接PA,求证:PA是⊙O的切线;
(3)在(1)的条件下,连接PC、PB,∠PAB的平分线分别交PC、PB于点D、E.求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴和轴分别交于点和点,点坐标为,将直线在轴下方的部分记作,作关于轴的对称图形.
(1)求的坐标;
(2)若,求的值;
(3)若经过点,求的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com