【题目】如图,在长方形中, 是边上一动点,连接,过点作的垂线,垂足为,交于点,交于点.
(1)当=,且是的中点时,求证: =.
(2)在(1)的条件下,求的值;
(3)类比探究:若=3, =2,则= .
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(-1,4).
(1)求此抛物线的解析式;
(2)设点D为已知抛物线对称轴上的任意一点,当△ACD面积等于6时,求点D的坐标;
(3)点P在线段AM上,当PC与y轴垂直时,过点P作轴的垂线,垂足为E,将△PCE沿直线CB翻折,使点P的对应点P'与P、E、C处在同一平面内,请求出P'坐标,并判断点P'是否在抛物线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,若顺次连接四边形ABCD各边中点得的四边形EFGH是矩形,则称原四边形ABCD为“中母矩形”即若四边形的对角线互相垂直,那么这个四边形称为“中母矩形”.
(1)如图2,在直角坐标系xOy中,已知A(4,0),B(1,4),C(4,6),请在格点上标出D点的位置(只标一点即可),使四边形ABCD是中母矩形.并写出点D的坐标.
(2)如图3,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于点O,试判断四边形BEGC是中母矩形?说明理由.
(3)如图4,在Rt△ABC中,AB=8,BC=6,E是斜边AC的中点,F是直角边AB的中点,P是直角边BC上一动点,试探究:当PC=_____时,四边形BPEF是中母矩形?(直角三角形中,30°角所对的直角边是斜边的一半)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线 BA–AD–DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1 cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.
请根据图中的信息,解答下列问题:
(1)AD= cm,BC= cm;
(2)求a的值,并用文字说明点N所表示的实际意义;
(3)直接写出当自变量t为何值时,函数y的值等于5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条公路上顺次有、、三地,甲、乙两车同时从地出发,分别匀速前往地、地,甲车到达地停留一段时间后原速原路返回,乙车到达地后立即原速原路返回,乙车比甲车早1小时返回到地,甲、乙两车各自行驶的路程(千米)与时间(小时)(从两车出发时开始计时)之间的函数图像如图所示.
(1)甲车到达地停留的时间为 小时;
(2)求甲车返回地的图中与之间的函数关系式;
(3)直接写出两车在图中相遇时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.
请写出AB中点M对应的数。
(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动。设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动。设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点
(1)点B表示的数为____________
(2)若线段BM的长为4.5,则线段AC的长为___________
(3)若线段AC的长为x,求线段BM的长(用含x的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABD中,AB=AD=1,∠B=30°,△ABD绕着A点逆时针α(0°<α<120°)旋转得到△ACE.CE与AD、BD分别交于点G、F;AD、CE交于点G,设DF+GF=x,△AEG的面积为y,则y关于x的函数解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当和时,与的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com