【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数( )
![]()
A.5个B.4个C.3个D.2个
【答案】C
【解析】
根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.
解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,
∴CD=ED;
②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;
③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;
④错误,因为∠B的度数不确定,故BE不一定等于DE;
⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.
故选:C.
科目:初中数学 来源: 题型:
【题目】已知∠MON=
,P为射线OM上的点,OP=1.
(1)如图1,
,A,B均为射线ON上的点,OA=1,OB
OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.
①依题意将图1补全;
②判断直线AC与OM的位置关系并加以证明;
(2)若
,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR. 根据(1)的解答经验,直接写出△POR的面积.
![]()
图1 备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推进节能减排,发展低碳经济,某市“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-节电投资)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,PD=
,求PA的长.
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD//BC,点E在边AD上,且CB=CE,点F是射线ED上的一个动点,
的平分线CG交BE的延长线于点G.
(1)若
,
,求
的度数;
(2)在动点F运动的过程中,
的值是否发生变化?若不变,求出它的值;若变化 ,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(问题情境)小明遇到这样一个问题:
如图①,已知
是等边三角形,点
为
边上中点,
,
交等边三角形外角平分线
所在的直线于点
,试探究
与
的数量关系.
小明发现:过
作
,交
于
,构造全等三角形,经推理论证问题得到解决.请直接写出
与
的数量关系,并说明理由.
(2)(类比探究)
如图②,当
是线段
上(除
外)任意一点时(其他条件不变)试猜想
与
的数量关系并证明你的结论.
(3)(拓展应用)
当
是线段
上延长线上,且满足
(其他条件不变)时,请判断
的形状,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.
![]()
(1)求y与x的函数关系式,并求出x的取值范围;
(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.
(1)试说明:CD=AF;
(2)若BC=BF,试说明:BE⊥CF.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
当
时,
;
,其中错误的结论有
![]()
A. ②③ B. ②④ C. ①③ D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com