精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD的边长为2,将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CEAM于点E,点N与点M关于直线CE对称,连接CN

(1)如图,当0°<α<45°时:

①依题意补全图;

②用等式表示∠NCE与∠BAM之间的数量关系:___________;

(2)当45°<α<90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;

(3)当0°<α<90°时,若边AD的中点为F,直接写出线段EF长的最大值.

【答案】(1)①补图见解析;②∠NCE=2BAM(2)NCE+BAM=90°,证明见解析;(3)1+

【解析】

(1)作CEAM于点EN与点M关于直线CE对称连接CN.由△ABM≌△CBM可得∠BAM=∠BCM由∠ABC=∠CEA=90°,BCAE交于一点可得∠BAM=∠BCE即可得到∠MCE=2∠BAM由点N与点M关于直线CE对称可得CNCM即可得到∠NCE=∠MCE进而得出∠NCE=2∠BAM

(2)连接CM判定△ADM≌△CDM即可得到∠DAM=∠DCM再根据∠DAQ=∠ECQ即可得到∠NCE=∠MCE=2∠DAQ再根据∠BAM=∠BCM,∠BCM+∠DCM=90°,即可得到

(3)依据∠CEA=90°,即可得到点E在以AC为直径的圆上EF经过圆心O即可得出线段EF长的最大值

1)补全的图形如图所示

NCE=2∠BAM.理由如下

如图1,连接MC

ABCD是正方形,∴AB=BC,∠ABM=∠CBM

BM=BM,∴△ABM≌△CBM,∴∠BAM=∠BCM

∵∠ABC=∠CEA=90°,BCAE交于一点,∴∠BAM=∠BCE,∴∠MCE=2∠BAM

N与点M关于直线CE对称,∴CNCM,∴∠NCE=∠MCE,∴∠NCE=2∠BAM

故答案为:NCE=2∠BAM

(2).理由如下

如图连接CM

ADCD,∠ADM=∠CDMDMDM,∴△ADM≌△CDM,∴∠DAM=∠DCM

∵∠ADQ=∠CEQ=90°,∠AQD=∠CQE,∴∠DAQ=∠ECQ,∴∠NCE=∠MCE=2∠DAQ,∴

∵∠BAM=∠BCM,∠BCM+∠DCM=90°,∴

(3)如图,∵CEA=90°,∴点E在以AC为直径的圆上O为圆心由题可得OFCD=1,OEOCAC

OE+OFEF∴当EF经过圆心O

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一个被平均分成等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为,乙转动转盘后指针所指区域内的数字为(当指针在边界上时,重转一次,直到指向一个区域为止).

直接写出甲转动转盘后所指区域内的数字为负数的概率;

用树状图或列表法,求出点落在第二象限内的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片.将这两张三角形胶片的顶点B与顶点E重合,把绕点B顺时针方向旋转,这时ACDF相交于点O.

(1)当旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD∠DCA的数量关系是

(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.

(3)在图③中,连接BO,AD,探索BOAD之间有怎样的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).

(1)求此抛物线的表达式;

(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB=90°,AC=BC=2,将直角边ACA点逆时针旋转至AC,连接BC′,EBC的中点,连接CE,CE的最大值为( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PBx轴于点B,且AC=BC.

(1)求一次函数、反比例函数的解析式;

(2)根据图象直接写出kx+b<x的取值范围;

(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要在宽AB20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即OAB的中点)时照明效果最佳,若CD=米,则路灯的灯柱BC高度应该设计为____米(计算结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的一个数学兴趣小组在本校学生中开展主题为环广西公路自行车世界巡回赛的专题调查活动,取随机抽样的方式进行问卷调查,问卷调查的结果分为非常了解”、“比较了解”、“基本了解”、“不太了解四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示不完整的统计图,请结合图中信息解答下列问题:

(1)请求出本次被调查的学生共多少人,并将条形统计图补充完整.

(2)估计该校1500名学生中“C等级的学生有多少人?

(3)在“B等级的学生中,初三学生共有4人,其中13女,在这4个人中,随机选出2人进行采访,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点EF分别在CDBC上,且BF=CE,连接BEAF相交于点G,则下列结论不正确的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

同步练习册答案