7£®Èçͼ£ºÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýA£¨3£¬0£©£¬B£¨4£¬1£©Á½µã£¬ÇÒÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©µÄº¯Êý¹ØÏµÊ½¼°µãCµÄ×ø±ê£»
£¨2£©Èçͼ£¨1£©£¬Á¬½ÓAB£¬ÔÚÌ⣨1£©ÖеÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PABÊÇÒÔABΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ£¨2£©£¬Á¬½ÓAC£¬EΪÏß¶ÎACÉÏÈÎÒâÒ»µã£¨²»ÓëA¡¢CÖØºÏ£©¾­¹ýA¡¢E¡¢OÈýµãµÄÔ²½»Ö±ÏßABÓÚµãF£¬ÊÔÅжϡ÷OEFµÄÐÎ×´£¬Çë˵Ã÷ÀíÓÉ£®²¢Ö±½Óд³ö¡÷OEFµÄÃæ»ýÈ¡×îСֵ¼°´ËʱµÄµãE×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝA£¨3£¬0£©£¬B£¨4£¬1£©Á½µãÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬½ø¶øµÃ³öµãCµÄ×ø±ê£»
£¨2£©¸ù¾ÝµãA¡¢B¡¢CµÄ×ø±ê¿ÉÒÔÇó³ö¡ÏBAC=90¡ã£¬´Ó¶øµÃµ½¡÷ABC¾ÍÊÇÖ±½ÇÈý½ÇÐΣ¬ËùÒÔµãC¼´ÎªËùÇóµÄÒ»¸öµãPµÄ£¬ÔÙ¸ù¾ÝƽÐÐÖ±ÏߵĽâÎöʽµÄkÖµÏàµÈÇó³ö¹ýµãBµÄÖ±ÏßPB£¬ÓëÅ×ÎïÏßÁªÁ¢Çó½â¼´¿ÉµÃµ½ÁíÒ»¸öµãP£»
£¨3£©¸ù¾ÝµãA¡¢B¡¢CµÄ×ø±ê¿ÉµÃ¡ÏOAE=¡ÏOAF=45¡ã£¬ÔÙ¸ù¾ÝÔÚͬԲ»òµÈÔ²ÖУ¬Í¬»¡Ëù¶ÔµÄÔ²ÖܽÇÏàµÈ¿ÉµÃ¡ÏOEF=¡ÏOFE=45¡ã£¬¡ÏEOF=90¡ãÈ»ºó¸ù¾ÝµÈ½Ç¶ÔµÈ±ß¿ÉµÃOE=OF£¬È»ºóÀûÓÃÖ±ÏßACµÄ½âÎöʽÉè³öµãEµÄ×ø±ê£¬ÔÙÀûÓù´¹É¶¨Àí±íʾ³öOEµÄƽ·½£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½ÁÐʽÕûÀí¼´¿ÉµÃµ½Ãæ»ýµÄ±í´ïʽ£¬ÔÙÀûÓöþ´Îº¯ÊýµÄ×îÖµÎÊÌâ½â´ð¼´¿É£®

½â´ð ½â£º£¨1£©£©¡ßÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýA£¨3£¬0£©£¬B£¨4£¬1£©Á½µã£¬
¡à$\left\{\begin{array}{l}{9a+3b+3=0}\\{16a+4b+3=1}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{5}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪ£ºy=$\frac{1}{2}$x2-$\frac{5}{2}$x+3£»
Áîx=0£¬Ôòy=3£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨0£¬3£©£»

£¨2£©¼ÙÉè´æÔÚ£¬·ÖÁ½ÖÖÇé¿ö£ºÈçͼ1£¬¢Ù¹ýµãB×÷BH¡ÍxÖáÓÚµãH£¬
¡ßA£¨3£¬0£©£¬C£¨0£¬3£©£¬B£¨4£¬1£©£¬
¡à¡ÏOCA=45¡ã£¬¡ÏBAH=45¡ã£¬
¡à¡ÏBAC=180¡ã-45¡ã-45¡ã=90¡ã£¬
¡à¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬
µãC£¨0£¬3£©·ûºÏÌõ¼þ£¬
ËùÒÔ£¬P1£¨0£¬3£©£»
¢Úµ±¡ÏABP=90¡ãʱ£¬¹ýµãB×÷BP¡ÎAC½»Å×ÎïÏßÓÚµãP£¬
¡ßA£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-x+3£¬
ÉèÖ±ÏßBPµÄ½âÎöʽΪy=-x+b£¬
Ôò-4+b=1£¬
½âµÃb=5£¬
¡àÖ±ÏßBP£ºy=-x+5£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-x+5}\\{y=\frac{1}{2}{x}^{2}-\frac{5}{2}x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{y}_{1}=6}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=4}\\{{y}_{2}=1}\end{array}\right.$£¬
ÓÖ¡ßµãB£¨4£¬1£©£¬
¡àµãPµÄ×ø±êΪ£¨-1£¬6£©£¬
×ÛÉÏËùÊö£¬´æÔÚµãP1£¨0£¬3£©£¬P2£¨-1£¬6£©£»

£¨3£©Èçͼ2£¬¡ßA£¨3£¬0£©£¬C£¨0£¬3£©£¬B£¨4£¬1£©£¬
¡à¡ÏOAE=45¡ã£¬¡ÏOAF=¡ÏBAH=45¡ã£¬
ÓÖ¡ß¡ÏOFE=¡ÏOAE£¬¡ÏOEF=¡ÏOAF£¬
¡à¡ÏOEF=¡ÏOFE=45¡ã£¬
¡àOE=OF£¬¡ÏEOF=180¡ã-45¡ã¡Á2=90¡ã£¬¼´¡÷OEFÊÇÖ±½ÇÈý½ÇÐΣ»
¡ßµãEÔÚÖ±ÏßACÉÏ£ºy=-x+3£¬
¡àÉèµãE£¨x£¬-x+3£©£¬
¸ù¾Ý¹´¹É¶¨Àí£¬OE2=x2+£¨-x+3£©2£¬
=2x2-6x+9£¬
ËùÒÔ£¬S¡÷OEF=$\frac{1}{2}$OE•OF=$\frac{1}{2}$OE2=x2-3x+$\frac{9}{2}$=£¨x-$\frac{3}{2}$£©2+$\frac{9}{4}$£¬
ËùÒÔ£¬µ±x=$\frac{3}{2}$ʱ£¬S¡÷OEFÈ¡×îСֵ$\frac{9}{4}$£¬
´Ëʱ-x+3=-$\frac{3}{2}$+3=$\frac{3}{2}$£¬
ËùÒÔ£¬µãEµÄ×ø±ê£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ۺϣ¬Ö÷ÒªÀûÓÃÁËÅ×ÎïÏßÓëxÖáµÄ½»µã¼äµÄ¾àÀëµÄ±íʾ£¬Å×ÎïÏßÉϵãµÄ×ø±êÌØÕ÷£¬Ö±½ÇÈý½ÇÐεÄÅж¨£¬ÔÚͬԲ»òµÈÔ²ÖУ¬Í¬»¡Ëù¶ÔµÄÔ²ÖܽÇÏàµÈµÄÐÔÖÊ£¬£¨3£©Ì⣬¸ù¾ÝµãA¡¢B¡¢CµÄ×ø±êÇó³ö45¡ã½Ç£¬´Ó¶øµÃµ½Ö±½Ç»òÏàµÈµÄ½ÇÊǽâÌâµÄ¹Ø¼ü£¬ÌâÄ¿¹¹Ë¼Áé»î£¬Êý¾ÝÉè¼ÆÇÉÃ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Ò»¸öÈý½ÇÐεÄÈý¸öÄڽǵıÈΪ1£º2£º3£¬ÔòÕâ¸öÈý½ÇÐεÄÈý±ßÖ®±ÈΪ1£º$\sqrt{3}$£º2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôa-b=1£¬Ôò´úÊýʽa-£¨b-2£©=3£»
Èôa+b=-1£¬Ôò´úÊýʽ5-a-b=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®·Ö½âÒòʽ2x3-18x½á¹ûÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®2x£¨x+3£©2B£®2x£¨x-3£©2C£®2x£¨x2-9£©D£®2x£¨x+3£©£¨x-3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ê¡½ÌÓýÌü¾ö¶¨ÔÚȫʡÖÐСѧ¿ªÕ¹¡°¹Ø×¢Ð£³µ¡¢¹Ø°®Ñ§Éú¡±ÎªÖ÷ÌâµÄ½»Í¨°²È«½ÌÓýÐû´«Öܻ£®Ä³ÖÐѧΪÁ˽ⱾУѧÉúµÄÉÏѧ·½Ê½£¬ÔÚȫУ·¶Î§ÄÚËæ»ú³é²éÁ˲¿·ÖѧÉú£¬½«ÊÕ¼¯µÄÊý¾Ý»æÖƳÉÈçͼËùʾÁ½·ù²»ÍêÕûµÄͳ¼ÆÍ¼£¬Çë¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣮

£¨1£©Õâ´Î¹²³éÈ¡50ÃûѧÉú½øÐе÷²é£¬²¢²¹È«ÌõÐÎͼ£»
£¨2£©ÔÚÕâ´Î³éÑùµ÷²éÖУ¬ÈôËæ»ú³éȡһλѧÉú£¬Ôò¸ÃѧÉúÊÇÆï×ÔÐгµÉÏѧµÄ¸ÅÂÊÊǶàÉÙ£¿
£¨3£©Èç¹û¸ÃУ¹²ÓÐ1000ÃûѧÉú£¬Ôò²ÉÓÃÄÄÖÖÉÏѧ·½Ê½µÄÈËÊý×î¶à£¬ÊǶàÉÙÈË£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2$\sqrt{3}$£¬AD=2£¬ÒÔABΪÏÒÔÚ¾ØÐÎÄÚ²¿»­Ò»Ìõ120¡ãµÄ»¡£¬¹ýµãC×÷Ö±ÏßCE£¬Óë$\widehat{AB}$ÇÐÓÚµãF£¬ÓëAD±ß½»ÓÚµãE£¬ÄÇôDEµÄ³¤ÊÇ-18+8$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼ÆË㣺$\frac{{a}^{2}+a+1}{a+1}$-$\frac{{a}^{2}-3a+1}{a-3}$=-$\frac{4}{{a}^{2}-2a-3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£¬ÀýÈç$\frac{5}{3}$=$\frac{3+2}{3}$=1+$\frac{2}{3}$=1$\frac{2}{3}$£¬ÔÚ·Öʽ$\frac{x-1}{x+1}$ÖзÖ×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊý£¬ÎÒÃdzÆÖ®Îª¼Ù·Öʽ£»ÔÚ·Öʽ$\frac{2x}{{x}^{2}-1}$ÖзÖ×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊý£¬ÎÒÃdzÆÖ®Îª¡°Õæ·Öʽ¡±£»ÀàËÆµÄ£¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽµÄÐÎʽ£©£¬ÀýÈ磺$\frac{x-1}{x+1}$=$\frac{£¨x-1£©-2}{x+1}$=1-$\frac{2}{x+1}$£®
£¨1£©½«·Öʽ$\frac{x-1}{x-2}$»¯Îª´ø·Öʽ£»
£¨2£©Èç¹û$\frac{2x+3}{x-1}$µÄֵΪÕûÊý£¬ÇóÕûÊýxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªkÊÇ·½³Ìx2-2010x+1µÄÒ»¸ö²»Îª0µÄ¸ù£¬²»½â·½³Ì£¬´úÊýʽk2-2009k+$\frac{2010}{{k}^{2}+1}$µÄֵΪ2009£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸