精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ABC是圆O的内接三角形,过点OODAB与点D,连接OA,点EAC的中点,延长EOBC于点F

1)求证:CEF∽△ODA

2)若ABC是不是等腰三角形?并说明理由.

【答案】1)见解析;(2)是,证明见解析.

【解析】

1)利用圆周角定理可知ECF=AOB,再由垂径定理得到AOD=AOB,从而证明ECF=∠AOD,再由垂径定理可得ODA=∠CEF=90°,由此即可得出结论;

2)由已知易证OEC∽△CEF,从而可得ECF=∠EOC,再根据圆周角定理证明EOC=∠CBA,从而可得ECF=∠CBA,由等角对等边即可得出结论.

证明:(1)连接OB

∴∠ECF=AOB

ODABOA=OB

∴∠AOD=AOB

∴∠ECF=∠AOD

ODAB

∴∠ODA=90°

EAC中点

OEAC

∴∠CEF=90°

∴△CEF∽△ODA

2OE·EF=CE2OEC=∠CEF

∴△OEC∽△CEF

∴∠ECF=∠EOC

∵∠EOC=CBA=

∴∠ECF=∠CBA

∴△ABC是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点C是⊙O的直径AB延长线上一点,过⊙O上一点DDFABF,交⊙O于点E,点MBE的中点,AB4,∠E=∠C30°

1)求证:CD是⊙O的切线;

2)求DM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面内容,并解决问题:

《名画》中的数学

前苏联著名科学家别莱利曼在他所著的《趣味代数学》中介绍了波格达诺夫·别列斯基的《名画》,画上那位老师拉金斯基是一位自然科学教授,放弃了大学教席(教师职务)来到农村学校当一名普通老师.画中,黑板上写着一道式子,如图所示:

从这道算式计算可以得出答案等于2,如果仔细一研究,1011121314这几个数具有一种有趣的特性: ,而且

请解答以下问题:

1)还有没有其他像这样五个连续的整数,前三个数的平方和正好等于后两个数的平方和呢?如果有,请求出另外的五个连续的整数;

2)若七个连续整数前四个数的平方和等于后三个数的平方和,请直接写出符合条件的连续整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ab,∠140°,∠280°,则∠3的度数为(  )

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]

A.120°B.130°C.140°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点

的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系

如图所示,给出以下结论:a=8;b=92;c=123.其中正确的是【 】

A.①②③ B.仅有①② C.仅有①③ D.仅有②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明准备给长米,宽米的长方形空地栽种花卉和草坪,图中IIIIII三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形均为正方形,且各有两边与长方形边重合;矩形(区域II)是这两个正方形的重叠部分,如图所示.

1)若花卉均价为,种植花卉的面积为,草坪均价为,且花卉和草坪栽种总价不超过元,求的最大值.

2)若矩形满足

①求的长.

②若甲、乙、丙三种花卉单价分别为,且边的长不小于边长的倍.求图中IIIIII三个区域栽种花卉总价的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,的角平分线边于

1)以边上一点为圆心,过两点作(不写作法,保留作图痕迹),再判断直线的位置关系,并说明理由;

2)若(1)中的边的另一个交点为,求线段与劣弧所围成的图形面积.(结果保留根号和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过A-1,0B40),C04)三点.

1)求抛物线的解析式及顶点D的坐标;

2)将(1)中的抛物线向下平移个长度单位,再向左平移h(h0)个长度单位,得到新抛物线.若新抛物线的顶点ABC内,求h的取值范围;

3)点P为线段BC上的一动点(点P不与点B,C重合),过点Px轴的垂线交(1)中的抛物线于点Q,当PQCABC相似时,求PQC的面积.

查看答案和解析>>

同步练习册答案