【题目】如图所示,△ABC是圆O的内接三角形,过点O作OD⊥AB与点D,连接OA,点E是AC的中点,延长EO交BC于点F.
(1)求证:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并说明理由.
【答案】(1)见解析;(2)是,证明见解析.
【解析】
(1)利用圆周角定理可知∠ECF=∠AOB,再由垂径定理得到∠AOD=∠AOB,从而证明∠ECF=∠AOD,再由垂径定理可得∠ODA=∠CEF=90°,由此即可得出结论;
(2)由已知易证△OEC∽△CEF,从而可得∠ECF=∠EOC,再根据圆周角定理证明∠EOC=∠CBA,从而可得∠ECF=∠CBA,由等角对等边即可得出结论.
证明:(1)连接OB,
∵,
∴∠ECF=∠AOB,
又∵OD⊥AB,OA=OB,
∴∠AOD=∠AOB,
∴∠ECF=∠AOD,
∵OD⊥AB ,
∴∠ODA=90°,
∵E为AC中点 ,
∴OE⊥AC,
∴∠CEF=90°,
∴△CEF∽△ODA.
(2)∵OE·EF=CE2,∠OEC=∠CEF,
∴△OEC∽△CEF,
∴∠ECF=∠EOC,
∵∠EOC=,∠CBA=
∴∠ECF=∠CBA,
∴△ABC是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,点C是⊙O的直径AB延长线上一点,过⊙O上一点D作DF⊥AB于F,交⊙O于点E,点M是BE的中点,AB=4,∠E=∠C=30°.
(1)求证:CD是⊙O的切线;
(2)求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面内容,并解决问题:
《名画》中的数学
前苏联著名科学家别莱利曼在他所著的《趣味代数学》中介绍了波格达诺夫·别列斯基的《名画》,画上那位老师拉金斯基是一位自然科学教授,放弃了大学教席(教师职务)来到农村学校当一名普通老师.画中,黑板上写着一道式子,如图所示:
从这道算式计算可以得出答案等于2,如果仔细一研究,10,11,12,13,14这几个数具有一种有趣的特性: ,而且.
请解答以下问题:
(1)还有没有其他像这样五个连续的整数,前三个数的平方和正好等于后两个数的平方和呢?如果有,请求出另外的五个连续的整数;
(2)若七个连续整数前四个数的平方和等于后三个数的平方和,请直接写出符合条件的连续整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,∠1=40°,∠2=80°,则∠3的度数为( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是【 】
A.①②③ B.仅有①② C.仅有①③ D.仅有②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明准备给长米,宽米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形和均为正方形,且各有两边与长方形边重合;矩形(区域II)是这两个正方形的重叠部分,如图所示.
(1)若花卉均价为元,种植花卉的面积为,草坪均价为元,且花卉和草坪栽种总价不超过元,求的最大值.
(2)若矩形满足.
①求,的长.
②若甲、乙、丙三种花卉单价分别为元,元,元,且边的长不小于边长的倍.求图中I、II、III三个区域栽种花卉总价的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,的角平分线交边于.
(1)以边上一点为圆心,过两点作(不写作法,保留作图痕迹),再判断直线与的位置关系,并说明理由;
(2)若(1)中的与边的另一个交点为,,求线段与劣弧所围成的图形面积.(结果保留根号和)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线经过A(-1,0)B(4,0),C(0,4)三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)将(1)中的抛物线向下平移个长度单位,再向左平移h(h>0)个长度单位,得到新抛物线.若新抛物线的顶点在△ABC内,求h的取值范围;
(3)点P为线段BC上的一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com