【题目】已知等腰内接于半径为5的,已知圆心到的距离为3,则这个等腰中底边上的高可能是_________.
【答案】8或2或.
【解析】
分四种情况讨论:是底边,△ABC是锐角三角形、钝角三角形;是腰,△ABC是锐角三角形、钝角三角形;再分别利用勾股定理和垂径定理求解即可.
解:分情况讨论:
①当是底边,△ABC是锐角三角形时,连接并延长到于点,如图1,
∵,为外心,
∴,
在中,,,
∴,
∴
②当是底边,△ABC是钝角三角形时,连接交于点,如图2所示,
在中,,,
∴,
∴,
③当是腰,△ABC是锐角三角形时,连接并延长到于点,作于点,如图3所示,
在中,,,
∴,
∴,
设,在中,,
在中,,
∴,解得:,∴,,
④当是腰时,△ABC是钝角三角形时,连接交于点,作于点,如图4所示,
在中,,,
∴,
∵△ABC是钝角三角形,即∠ABC>90,
∴∠ABE=∠CBE>45,
∴∠CBE>∠BOD,
∴OD>BD,
而OD=3BD=4,
∴当是腰,△ABC是钝角三角形,这种情况不存在;
故答案为:8或2或.
科目:初中数学 来源: 题型:
【题目】已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直x=1线,下列结论中:①abc>0;②若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;③若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2<x1<x2<4;④(a+c)2>b2;一定正确的是______(填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_____________;
(Ⅱ)解不等式②,得________________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)
(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,线段及一定点,是线段上一动点(、除外),作直线,使于点,作直线,使于点.已知,,设,,数学学习小组根据学习函数的经验,对与之间的内在关系进行探究.
(1)写出y与之间的关系和的取值范围;
活动操作:
(2)①列表,根据(1)的所求函数关系式讲算并补全表格
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | |
1.8 | 9 | 21 |
②描点:根据表格中数值,继续在图2中描出剩余的三个点;
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考:
(3)请你结合函数的图象,写出该函数的一条性质或结论.
(4)将该函数图象向上移3个单位,再向左平移4个单位后,直接写出平移后的函数关系式和的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得______________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如图不完整统计图.请结合图中信息,解决下列问题.
(1)此次调查中接受调查的人数为______人,其中“非常满意”的人数为______人;“一般”部分所在扇形统计图的圆心角度数为_______.
(2)兴趣小组准备从“不满意”的位群众中随机选择位进行回访,已知这位群众中有位来自甲片区,另位来自乙片区,请用画树状图或列表的方法求出选择的群众都来自甲片区的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com