精英家教网 > 初中数学 > 题目详情

【题目】已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以APBP为边在AB的同侧作正方形。设点P的运动时间为t.

(1)如图1,若两个正方形的面积之和当时,求出的大小;

(2)如图2,当取不同值时,判断直线的位置关系,说明理由;

(3)如图3,用表示出四边形的面积.

【答案】1;(2,理由见解析;(3

【解析】

1)由题意,,当时,,然后求出两个正方形面积之和即可;(2)延长,根据正方形的性质得到AP=PC,PE=PB,APE=CPB=90°,在证的△APE≌△PBC,得到,在运用角的运算即可;(3)延长交于点,可得四边形EDBF的面积=四边形HFBA-三角形DEH的面积-三角形ADB的面积,然后根据已知条件和正方形的性质即可解答.

解:(1)由题意,

时,

2

理由如下:

延长,如下图

在正方形和正方形

中,

(全等三角形对应角相等)

,且

,即.

3)延长交于点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校学生会干部对校学生会倡导的助残自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图的统计图(图中信息不完整).已知A,B两组捐款人数的比为15.

捐款人数分组统计表

组别

捐款额x/

人数

A

1≤x<10

a

B

10≤x<20

100

C

20≤x<30

D

30≤x<40

E

x≥40

请结合以上信息解答下列问题:

(1)a=____,本次调查的样本容量是______

(2)先求出C组的人数,再补全捐款人数分组统计图①

(3)若该学校自愿捐款的学生有1500人,请估计捐款不少于30元的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任意写出一个数位不含零的三位数,任取三个数字中的两个,组合成所有可能的两位数(有6个),求出所有这些两位数的和,然后将它除以原三位数的各个数位上的数的和.例如,对三位数223,取其两个数字组成所有可能的两位数:222322233232.它们的和是154.三位数223各位数的和是7再换几个数试一试,你发现了什么?请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现的结果的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一次函数y=kx+b与反比例函数y=(x0)的图象交于A(1,6),B(n,2)两点.

(1)求一次函数和反比例函数的解析式

(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,.

1)用尺规作图法作,与边交于点(保留作题痕迹,不用写作法);

2)在(1)的条件下,当时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,MBC边上的一点,ECD边的中点,AE平分∠DAM.

1)证明:AM=AD+MC.

2)若四边形ABCD是平行四边形,其它条件不变,如图,(1)中的结论是否成立?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式,并探究

……

1)写出第④个等式:______

2)某同学发现,四个连续自然数的积加上1后,结果都将是某一个整数的平方.当这四个数较大时可以进行简便计算,如:

请你猜想写出第n个等式,用含有n的代数式表示,并通过计算验证你的猜想.

3)任何实数的平方都是非负数(即),一个非负数与一个正数的和必定是一个正数(即时,).根据以上的规律和方法试说明:无论x为什么实数,多项式的值永远都是正数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:

①若a+b+c=0,则b2﹣4ac>0;

②若方程两根为﹣12,则2a+c=0;

③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;

④若b=2a+c,则方程有两个不相等的实根.其中正确的有(  )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

同步练习册答案