【题目】自2017年3月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:
第I级:居民每户每月用水18吨以内含18吨每吨收水费a元;
第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b元;
第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I、Ⅱ级标准收费,超过部分每吨收水费c元.
设一户居民月用水x吨,应缴水费为y元,y与x之间的函数关系如图所示
(1)根据图象直接作答:a= ,b= ;
(2)求当x≥25时y与x之间的函数关系;
(3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月“用水量的大小设计出对居民缴费最实惠的方案.(写出过程)
【答案】(1)3;4;(2)当x≥25时,y与x之间的函数关系式为y=6x﹣68;(3)当x<34时,选择缴费方案①更实惠;当x=34时,选择两种缴费方案费用相同;当x>34时,选择缴费方案②更实惠
【解析】
(1)根据单价=总价÷数量可求出a,b的值,此问得解;
(2)观察函数图象,找出点的坐标,利用待定系数法即可求出当x≥25时y与x之间的函数关系;
(3)由总价=单价×数量可找出选择缴费方案②需交水费y(元)与用水数量x(吨)之间的函数关系式,分别找出当6x﹣68<4x,6x﹣68=4x,6x﹣68>4x时x的取值范围(x的值),选择费用低的方案即可得出结论.
(1)a=54÷18=3,
b=(82﹣54)÷(25﹣18)=4.
故答案为:3;4.
(2)设当x≥25时,y与x之间的函数关系式为y=mx+n(m≠0),
将(25,82),(35,142)代入y=mx+n,得:,
解得:,
∴当x≥25时,y与x之间的函数关系式为y=6x﹣68.
(3)根据题意得:选择缴费方案②需交水费y(元)与用水数量x(吨)之间的函数关系式为y=4x.
当6x﹣68<4x时,x<34;
当6x﹣68=4x时,x=34;
当6x﹣68>4x时,x>34.
∴当x<34时,选择缴费方案①更实惠;当x=34时,选择两种缴费方案费用相同;当x>34时,选择缴费方案②更实惠.
科目:初中数学 来源: 题型:
【题目】(1)已知两点A(3,m),B(2m,4),且A和B到x轴距离相等,求B点坐标.
(2)点A在第四象限,当m为何值时,点A(m+2,3m5)到x轴的距离是它到y轴距离的一半.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.
(1)当a=﹣ 时,①求h的值;②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.
(1)说明AN=MB;
(2)将△ACM绕点C按逆时针旋转180°,使A点落在CB上,请对照原题图画出符合要求的图形;
(3)在(2)所得到的图形中,结论“AN=BM”是否成立?若成立,请说明理由;若不成立,也请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD的两个顶点所形成的四边形是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①△ABQ≌△CAP;;②∠CMQ的度数不变,始终等于60°③BP=CM;正确的有几个( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:
(1)数轴上表示2和5两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;
(2)已知|a﹣3|=7,则有理数a= ;
(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6 ,那么AC= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com