精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到ab异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在12之间,利用对称轴公式列出不等式,由a大于0,得到-2a小于0,在不等式两边同时乘以-2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=-1时对应的函数值大于0,将x=-1代入二次函数解析式得到a-b+c大于0,又4a大于0,c大于0,可得出a-b+c+4a+c大于0,合并后得到(4)正确,综上,即可得到正确的个数.

由图形可知:抛物线开口向上,与y轴交点在正半轴,

a>0,b<0,c>0,即abc<0,故(3)错误;

x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;

∵对称轴在12之间,

a>0,

∴在不等式左右两边都乘以2a得:2a>b>4a,故(2)正确;

x=1时,对应的函数值大于0,故将x=1代入得:ab+c>0,

a>0,即4a>0,c>0,

5ab+2c=(ab+c)+4a+c>0,故(4)错误,

综上,正确的有1个,为选项(2).

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 如图,ABC 中,ACBC,∠C90度,AD平分∠CABDEAB,若AB20厘米,则DEB的周长为_____厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,设点P到原点O的距离为ρOPx轴正方向的夹角为α,则用[ρα]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[,45°].若点Q的极坐标为[4,120°],则点Q的坐标为(  )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现:如图1,如果△ACB和△CDE均为等边三角形,点A、D、E在同一直线上,连接BE.ADBE的数量关系为   AEB的度数为   .

(2)拓展探究:如图2,如果△ACB和△CDE均为等腰三角形,∠ACB=DCE=90°,点A、D、E在同一直线上,连接BE,判断线段AEBE的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+7x轴、y轴分别相交于点C、B,与直线y=x相交于点A.

(1)求A点坐标;

(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是   

(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°BE平分∠ABCAC于点E,点DAB上,DE⊥EB

1)求证:AC△BDE的外接圆的切线;

2)若AD=2AE=6,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在中,,点同时由两点分别沿方向向点匀速移动,它们的速度都是,设秒后的面积为面积的一半.则方程(一般形式)为:________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,是对角线,,延长的延长线于点.

1)求证:

2)若,求的值;

3)过点,交的延长线于点,过点,交的延长线于点,连接.,点是直线上的动点,当的值最小时,点与点是否可能重合?若可能,请说明理由并求此时的值(用含的式子表示);若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:

(1)“快车”行驶里程不超过5公里计费8元;

(2)“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;

(3)A点的坐标为(6.5,10.4);

(4)从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元,其中正确的个数有(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

同步练习册答案