精英家教网 > 初中数学 > 题目详情

【题目】某校组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的球类运动进行了统计,并绘制如图1、图2所示的条形和扇形统计图.

根据统计图中的信息,解答下列问题:

1)求本次被调查的学生人数,并补全条形统计图;

2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;

3)根据调查结果,请你为学校即将组织的一项球类比赛提出合理化建议.

【答案】1)本次调查的人数是50人,补图见解析;(2)该校最喜欢篮球运动的学生约390人;(3)由于喜欢羽毛球的人数最多,学校应组织一场羽毛球比赛.

【解析】

1)利用篮球的人数与所占的百分比即可求出总数;然后利用总数求出羽毛球和其他的人数,即可补全条形统计图;

2)用1500乘喜欢篮球的人所占的百分比26%即可得出答案;

3)根据喜欢羽毛球的人数最多,可以建议学校组织羽毛球比赛.

1

本次调查的人数是50人,

喜欢羽毛球的人数为:(人)

喜欢其他的人数为 (人)

统计图如图:

2

该校最喜欢篮球运动的学生约390人.

3)由于喜欢羽毛球的人数最多,学校应组织一场羽毛球比赛.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.

请填空完成下列证明.

证明:如图,作Rt△ABC的斜边上的中线CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等边三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一条道路上,甲车从地到地,乙车从地到地,乙先出发,图中的折线段表示甲、乙两车之间的距离(千米)与行驶时间(小时)的函数关系的图象,根据图象解决以下问题:

1)乙先出发的时间为 小时,乙车的速度为 千米/时;

2)求线段的函数关系式,并写出自变量的取值范围;

3)甲、乙两车谁先到终点,先到多少时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.

(1)求b,c的值;

(2)判断ABC的形状并说明理由;

(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识背景

我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题

问题初探

如图(1),ABC中,∠BAC90°ABAC,点DBC上一点,连接AD,以AD为一边作ADE,使∠DAE90°ADAE,连接BE,猜想BECD有怎样的数量关系,并说明理由.

类比再探

如图(2),ABC中,∠BAC90°ABAC,点MAB上一点,点DBC上一点,连接MD,以MD为一边作MDE,使∠DME90°MDME,连接BE,则∠EBD   .(直接写出答案,不写过程,但要求作出辅助线)

方法迁移

如图(3),ABC是等边三角形,点DBC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BDBEBC之间有怎样的数量关系?   (直接写出答案,不写过程).

拓展创新

如图(4),ABC是等边三角形,点MAB上一点,点DBC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)作图发现:

如图1,已知,小涵同学以为边向外作等边和等边,连接.这时他发现的数量关系是

2)拓展探究:

如图2,已知,小涵同学以为边向外作正方形和正方形,连接,试判断之间的数量关系,并说明理由.

3)解决问题

如图3,要测量池塘两岸相对的两点的距离,已经测得米,,则 米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)、问题:如图1,在四边形ABCD中,点PAB上一点,∠DPC=A=B=90°.求证:AD·BC=AP·BP

(2)、探究:如图2,在四边形ABCD中,点PAB上一点,当∠DPC=A=B=θ时,上述结论是否依然成立?说明理由.

(3)、应用:请利用(1)(2)获得的经验解决问题:

如图3,在ABD中,AB=6AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=A.设点P的运动时间为t(秒),当DC的长与ABD底边上的高相等时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DEDF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题:如图中,边上一点(不与点重合),连接,过点,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______

2)探索:如图,当点为边上一点(不与点重合),均为等腰直角三角形,.试探索线段之间满足的等量关系,并证明你的结论;

3)拓展:如图,在四边形中,,若,请直接写出线段的长.

查看答案和解析>>

同步练习册答案