精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】证明见解析

【解析】

试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;

(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2

(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.

试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);

(2)设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2

(3)EF2=2BE2+2DF2

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2

即2(DF2+BE2)=EF2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.

(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为   米;

(2)若此时花圃的面积刚好为45m2,求此时花圃的长与宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在8×8的正方形网格中,CABDEF的顶点都在边长为1的小正方形的顶点上.

(1)填空:AC=________,AB=________;

(2)判断CABDEF是否相似,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 三角形可以分为等边三角形、直角三角形、钝角三角形

B. 如果一个三角形的一个外角大于与它相邻的内角,则这个三角形为锐角三角形

C. 各边都相等的多边形是正多边形

D. 五边形有五条对角线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°,ABACBC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DNMEDNME相交于点O.若△OMN是直角三角形,则DO的长是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,某超市从一楼到二楼有一自动扶梯,图②是侧面示意图.已知自动扶梯AB的坡度为12.4,AB的长度是13米,MN是二楼楼顶,MNPQCMN上处在自动扶梯顶端B点正上方的一点,BCMN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)(  )

A. 10.8 B. 8.9 C. 8.0 D. 5.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个角的补角是128°37″那么这个角的余角是______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是

(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将直线y=2x﹣1向下平移2个单位长度后所得的直线表达式是_____________

查看答案和解析>>

同步练习册答案