【题目】已知四边形ABCD是矩形,AB=2,BC=4,E为BC边上一动点且不与B、C重合,连接AE;
(1)如图1,过点E作EN⊥AE交CD于点N
①若BE=1,求CN的长;②将△ECN沿EN翻折,点C恰好落在边AD上,求BE的长;
(2)如图2,连接BD,设BE=m,试用含m的代数式表示S四边形CDFE:S△ADF值.
【答案】(1)①CN=;②BE=2或BE=;(2)S四边形CDFE:S△ADF=1+﹣.
【解析】
(1)①求出CE=BC-BE=3,证明△ABE∽△ECF,得出=,即可得出结果;
②过点E作EF⊥AD于F,则四边形ABEF是矩形,得出AB=EF=2,AF=BE,由折叠的性质得出CE=C′E,CN=C′N,∠EC′N=∠C=90°,证明△EC′F∽△NC′D,得出==,则==,由=,得出=,则==,得出C′D=BE,设BE=x,则C′D=AF=x,C′F=4-2x,CE=4-x,则=,=,,求出DN=x(2-x),CN=,由CN+DN=CD=2,即可得出结果;
(2)易证△ADF∽△EBF,得出==,则=()2=,推出S△ADF=s△BEF,由同高底边比例得出S△ABF==S△BEF,由矩形的性质得出S四边形CDFE=S△ADF+S△ABF-S△BEF=(+﹣1)S△BEF,即可得出S四边形CDFE:S△ADF值.
解:(1)①∵BE=1,
∴CE=BC﹣BE=4﹣1=3,
∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠BEA+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF,
∴=,
即:=,
解得:CN=;
②过点E作EF⊥AD于F,如图1所示:
则四边形ABEF是矩形,
∴AB=EF=2,AF=BE,
由折叠的性质得:CE=C′E,CN=C′N,∠EC′N=∠C=90°,
∴∠NC′D+∠EC′F=90°,
∵∠C′ND+∠NC′D=90°,
∴∠EC′F=∠C′ND,
∵∠D=∠EFC′,
∴△EC′F∽△NC′D,
∴==,
∴==,
∵=,
∴=,
∴==,
∴C′D=BE,
设BE=x,则C′D=AF=x,C′F=4﹣2x,CE=4﹣x,
∴=,=,
∴DN=x(2﹣x),CN=,
∴CN+DN=x(2﹣x)+=CD=2,
解得:x=2或x=,
∴BE=2或BE=;
(2)∵四边形ABCD为矩形,
∴BC=AD,AD∥BC,
∴△ADF∽△EBF,
∴==,
∴=()2=,
∴S△ADF=s△BEF,
S△ABF===S△BEF,
S四边形CDFE=S△ADF+S△ABF﹣S△BEF=S△BEF+S△BEF﹣S△BEF=(+﹣1)S△BEF,
∴S四边形CDFE:S△ADF=(+﹣1)S△BEF: s△BEF=1+﹣.
科目:初中数学 来源: 题型:
【题目】某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P(个)与每个书包销售价x(元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为40元时,每天销售20个.
(1)求P关于x的函数关系式;
(2)如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、AC是⊙O的弦,AB、AC的长分别等于⊙O的内接正六边形和正五边形的边长.
(1)试判断BC的长是否等于⊙O的内接正几边形的边长;
(2)如果⊙O的半径OA=6,求⊙O的内接正六边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,m),B(n,﹣1)两点.
(1)求出这个一次函数的表达式.
(2)求△OAB的面积.
(3)直接写出使一次函数值大于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示(坐标系内正方形网格的单位长度为1):
(1)在网格内画出和△ABC以点O为位似中心的位似图形△A1B1C1,使△A1B1C1和△ABC的位似比为2:1且△A1B1C1位于y轴左侧;
(2)分别写出A1、B1、C1三个点的坐标:A1 、B1 、C1 ;
(3)求△A1B1C1的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0、1、2;乙袋中装有3个完全相同的小球,分别标有数字-1、-2、0;先从甲袋中随机取出一个小球,记录标有的数字为x,再从乙袋中随机取出一个小球,记录标有的数字为y,确定点M的坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在函数y=-x2-1的图象上的概率;
(3)若以点M为圆心,2为半径作⊙M,求⊙M与坐标轴相切的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com