【题目】(1)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.
(2)南沙群岛是我国固有领土,现在我国南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至A处时,该岛位于正东方向的B处,为了防止某国巡警干扰,就请求我国C处的鱼监船前往B处护航,测得C与AB的距离CD为20海里,已知A位于C处的南偏西60°方向上,B位于C的南偏东45°的方向上, ≈1.7,结果精确到1海里,求A、B之间的距离.
【答案】(1)证明见解析;(2)A、B间的距离是(20+20)海里
【解析】试题分析:(1)根据ASA证明△OAE≌△OCF,从而得到OE=OF;(2)根据勾股定理求出AD、BD的距离,再由AB=AD+BD可求出AB之间的距离;
试题解析:
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD ,
∴∠OAE=∠OCF
∵∠AOE=∠COF ,
∴△OAE≌△OCF
∴OE=OF
(2)解:∵CD⊥AB,∠ACD=600 ,
∴∠A=300
∵CD=20,
∴AD=20
∵CD⊥AB, ∠BCD=450,
∴∠B=450 ,
∴CD=BD=20
∴AB= AD+ BD=20+20(海里)
科目:初中数学 来源: 题型:
【题目】△ABC是不规则三角形,若线段AD把△ABC分为面积相等的两部分,则线段AD应该是( )
A.三角形的角平分线
B.三角形的中线
C.三角形的高
D.以上都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程.在括号内的横线上填空或填上推理依据.
如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD
证明:∵AB∥EF
∴∠APE=()
∵EP⊥EQ
∴∠PEQ=()
即∠QEF+∠PEF=90°
∴∠APE+∠QEF=90°
∵∠EQC+∠APE=90°
∴∠EQC=
∴EF∥()
∴AB∥CD()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为( )
A.6cm2
B.30cm2
C.24cm2
D.36cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.
解:∵∠1=∠2(已知),
∠1=∠3(),
∴∠2=∠3(等量代换).
∴∥(同位角相等,两直线平行).
∴∠C=∠ABD ().
又∵∠C=∠D(已知),
∴∠D=∠ABD(等量代换).
∴AC∥DF().
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45.
(1)试判断CD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为3,sin∠ADE=,求AE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com