精英家教网 > 初中数学 > 题目详情
计算:
1
3
+1
-sin60°+
32
×
1
8
考点:二次根式的混合运算,特殊角的三角函数值
专题:计算题
分析:根据特殊角的三角函数、二次根式的化简进行计算即可.
解答:解:原式=
3
-1
(
3
+1)(
3
-1)
-
3
2
+4
2
×
2
4

=
3
-1
2
-
3
2
+2
=
3
-1-
3
2
+2
=
3
2
点评:本题考查了二次根式的混合运算以及特殊角的三角函数值,在二次根式的混合运算中,要掌握好运算顺序及各运算律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式组
3x+2≤2(x+3)
2x-1
3
x
2
,并写出不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.
(1)当t=
1
2
秒时,则OP=
 
,S△ABP=
 

(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线l:y=-2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,-1),(2,0).
(1)求该抛物线的解析式;
(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.
(3)请你参考(2)中结论解决下列问题:
(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.
(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:等边△ABC,D、E分别是射线AC、射线BC上的点,且∠BAE=∠CBD<60°,DH⊥AB点H.

(1)如图1,当点D、E分别在边AC、边BC上时,求证:AC=2AH+BE;
(2)如图2,当点D、E分别在AC延长线和CB延长线上时,线段AC、AH、BE的数量关系为:
 

(3)在(2)的条件下,如图3,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.
(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?
(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);
(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.

查看答案和解析>>

同步练习册答案