【题目】疫情期间福州一中初中部举行了“宅家运动会”.该学校七、八年级各有300名学生参加了这次“宅家运动会”,现从七、八年级各随机抽取20名学生宅家运动会的成绩进行抽样调查.
收集数据如下:
七年级: | 74 | 97 | 96 | 72 | 98 | 99 | 72 | 73 | 76 | 74 |
74 | 69 | 76 | 89 | 78 | 74 | 99 | 97 | 98 | 99 | |
八年级: | 76 | 88 | 96 | 89 | 78 | 94 | 89 | 94 | 95 | 50 |
89 | 68 | 65 | 89 | 77 | 86 | 89 | 88 | 92 | 91 |
整理数据如下:
七年级 | 0 | 1 | 10 | 1 | a |
八年级 | 1 | 2 | 3 | 8 | 6 |
分析数据如下:
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | 84.2 | 77 | 74 | 138.56 |
八年级 | 84 | b | 89 | 129.7 |
根据以上信息,回答下列问题:
(1)___________,___________;
(2)你认为哪个年级“宅家运动会”的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性)
(3)学校对“宅家运动会”成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有___________人.
【答案】(1) ,;
(2) 八年级成绩较好,理由①:八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高;理由②:方差八年级较小,说明八年级的成绩比较稳定;
(3) 345(人).
【解析】
(1)从调查的7年级的总人数20人中减去前几组的人数即可;将8年级20名学生的成绩排序后找到最中间的第10个和第11个数的平均是即可求出中位数;
(2)从中位数、众数、方差等方面进行分析即可;
(3)用各个年级的总人数乘以样本中大于等于80分所占的百分比即可.
解:(1)由题意有:
将8年级的20名学生成绩排序后最中间两个数据为:89和89,故中位数为89;
故答案为:,.
(2) 八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定;
(3)七年级优胜奖所占的比例为:,
故其300人中能获得优胜奖的有:(人),
八年级优胜奖所占的比例为:,
故其300人中能获得优胜奖的有:(人),
∴所有能获得优胜奖的学生人数为:135+210=345(人).
故答案为:345(人).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.
(1)求证:CE=AD;
(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(一)知识链接
若点M,N在数轴上,且M,N代表的实数分别是a,b,则线段MN的长度可表示为 .
(二)解决问题
如图,将一个三角板放置在平面直角坐标系中,∠ACB=90°,AC=BC,点B,C的坐标分别为(-2,-4),(-4,0).
(1)求点A的坐标及直线AB的表达式;
(2)若P是x轴上一点,且S△ABP=6,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作矩形”的尺规作图过程,已知:
求作:矩形
作法:如图,
①作线段的垂直平分线角交于点;
②连接并延长,在延长线上截取
③连接
所以四边形即为所求作的矩形
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下边的证明:
证明: ,,
四边形是平行四边形( )(填推理的依据)
四边形是矩形( )(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有__________个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”、“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:
(1)该顾客至少可得 元购物券,至多可得 元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°
(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;
(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;
(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与⊙O相离,OA⊥于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)若PC=2,OA=4,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com