分析 先根据等腰三角形的性质以及角平分线的定义,得出△AMB≌△ANC(AAS),进而得到AM﹦AN,即△AMN是等腰三角形.
解答 证明:∵AB﹦AC(已知),
∴∠ABC﹦∠ACB(等边对等角).
∵BD、CE分别平分∠ABC、∠ACB(已知),
∴∠ABD﹦∠ACE.
∵AM⊥BD,AN⊥CE(已知),
∴∠AMB﹦∠ANC﹦90°(垂直的定义).
∴在△AMB和△ANC中,
$\left\{\begin{array}{l}{∠AMB﹦∠ANC}\\{∠ABD﹦∠ACE}\\{AB﹦AC}\end{array}\right.$,
∴△AMB≌△ANC(AAS),
∴AM﹦AN,
∴△AMN是等腰三角形.
点评 本题考查了全等三角形的判定与性质及等腰三角形的性质与判定,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4a | B. | 2$\sqrt{2}$πa | C. | $\sqrt{2}$πa | D. | $\sqrt{2}$a |
查看答案和解析>>
科目:初中数学 来源:2017届浙江省九年级3月模拟数学试卷(解析版) 题型:单选题
如图,AB是半圆直径,半径OC⊥AB于点O,点D是弧BC的中点,连结CD、AD、OD,给出以下四个结论:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是( )
A. ①③ B. ②④ C. ①②③ D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com