【题目】如图,已知二次函数(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
【答案】(1),M(1,5);(2)2<m<4;(3)P1(,),P2(,),P3(3,1),P4(﹣3,7).
【解析】
试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;
(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;
(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
试题解析:(1)把点A(3,1),点C(0,4)代入二次函数,得: 解得:,∴二次函数解析式为,配方得,∴点M的坐标为(1,5);
(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得: 解得:,∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F.
把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1),∴1<5﹣m<3,解得2<m<4;
(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5).
∵MG=1,GC=5﹣4=1,∴MC===,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点.
①若有△PCM∽△BDC,则有,∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=,span>∴PH==,把x=代入y=﹣x+4,解得y=,∴P1(,);
同理可得,若点P在y轴左侧,则把x=代入y=﹣x+4,解得y=,∴P2(,);
②若有△PCM∽△CDB,则有,∴CP==,∴PH==3;
若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7),∴所有符合题意得点P坐标有4个,分别为P1(,),P2(,),P3(3,1),P4(﹣3,7).
科目:初中数学 来源: 题型:
【题目】数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成如图所示的条形统计图,这组数据的中位数和众数分别是( )
A.中位数和众数都是8小时
B.中位数是25人,众数是20人
C.中位数是13人,众数是20人
D.中位数是6小时,众数是8小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD置于直角坐标系中,点A(4,0),点B(0,3),点D(异于点B、C)为边BC上动点,过点O、D折叠纸片,得点B′和折痕OD.过点D再次折叠纸片,使点C落在直线DB′上,得点C′和折痕DE,连接OE,设BD=t.
(1)当t=1时,求点E的坐标;
(2)设S四边形OECB=s,用含t的式子表示s(要求写出t的取值范围);
(3)当OE取最小值时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以从而(当a=b时取等号).
阅读2:若函数;(m>0,x>0,m为常数),由阅读1结论可知:,所以当,即时,函数的最小值为.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(),求当x= 时,周长的最小值为 ;
问题2:已知函数()与函数(),
当x= 时,的最小值为 ;
问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com